Respuesta :

Given :-

  • Radius of circle

[tex] \\ \\ [/tex]

To find:-

  • Area of circle

[tex] \\ \\ [/tex]

Let :

  • Area of circle be A.

[tex] \\ \\ [/tex]

We know:

[tex] \\ [/tex]

[tex] \bigstar \boxed{ \rm Area \: of \: circle \: = \pi {r}^{2} }[/tex]

[tex] \\ \\ [/tex]

So:-

[tex] \dashrightarrow\sf A= \pi {r}^{2} [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf A=\pi \times {8}^{2} [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf A= \pi \times 8 \times 8[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf A= \pi \times 64[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf A= 64\pi \: ft {}^{2} [/tex]

[tex] \\ \\ [/tex]

Therefore option A is correct

know more:-

[tex]\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}[/tex]

ACCESS MORE