Check the picture below.
so let's simply get the area of each of the triangular faces and the base and sum them all up.
[tex]\stackrel{\textit{\Large Areas}}{\stackrel{\textit{front and back}}{2\left[ \cfrac{1}{2}(100)(40) \right]}~~ + ~~\stackrel{\textit{left and right}}{2\left[ \cfrac{1}{2}(50)(40) \right]}~~ + ~~\stackrel{base}{(100\cdot 50)}} \\\\\\ 4000~~ + ~~2000~~ + ~~5000\implies 11000~m^2[/tex]