well, there are 12 months in a year, so, for a year and 1 month that'll be 13 months, or namely 13/12 ths of a year.
[tex]~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\pounds768\\ r=rate\to 100\%\to \frac{100}{100}\dotfill &1.00\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\dotfill &4\\ t=years\dotfill &\frac{13}{12} \end{cases}[/tex]
[tex]A=768\left(1+\frac{1.00}{4}\right)^{4\cdot \frac{13}{12}}\implies A=768(1.25)^{\frac{13}{3}}\implies A\approx \stackrel{\pounds}{2019.78} \\\\\\ \stackrel{~\hfill \textit{interest yielded}}{2019.78~~ - ~~768~~ \approx ~~ \stackrel{\pounds}{1251.78}}[/tex]