Respuesta :

[tex]\\ \rm\longmapsto sin45=\dfrac{h}{22}[/tex]

[tex]\\ \rm\longmapsto h=22sin45=22(0.71)=15.6in[/tex]

  • Parallel sides of a parallelogram are equal.

[tex]\\ \rm\longmapsto Area[/tex]

[tex]\\ \rm\longmapsto Base(Height)[/tex]

[tex]\\ \rm\longmapsto 26(15.6)=405.6in^2[/tex]

#22

  • Find the height using the trigonometric ratio.
  • Trigonometric ratio used here is:

[tex]\boxed{\mathfrak{\sin( \theta)=\frac{perpendicular}{hypotenuse}}}[/tex]

  • θ = 45°
  • Perpendicular = ?
  • Hypotenuse = 22

[tex] \tt \: \sin(45 \degree) = \frac{p}{22} [/tex]

[tex] \tt \: \frac{ \sqrt{2} }{2} = \frac{p}{22} [/tex]

[tex] \tt \: 22 \sqrt{2} = 2p[/tex]

[tex] \tt11 \sqrt{2} = p \: or \: p = 11 \sqrt{2} [/tex]

Therefore th value of perpendicular is 15.5 when rounded off...

#23

  • Now, We will find the area with the help of height that we just found using the trigonometric ratio.
  • The formula to find area of parallelogram is:

[tex] \boxed{ \mathfrak{area = base \times height}}[/tex]

  • Base = 26 in. [Since opposite sides of parallelogram are equal and parallel]
  • Height = 15.5 in.

[tex] \sf \: area = 26 \times 15.5 \\ \sf \: area = 403 \: {in}^{2} [/tex]

Thus, The area of parallelogram is 403 inch²...~