Respuesta :
[tex]\bold{\huge{\blue{\underline{ Solution }}}}[/tex]
Given :-
- The area of rectangular trampoline is 135ft².
- The length of the trampoline is 6ft greater than the width of the trampoline .
To Find :-
- We have to find the width of the trampoline
Let's Begin :-
We have,
- Area of rectangular trampoline = 135ft²
Let the width of the rectangular trampoline be w
According to the question,
- Length is 6ft greater than width
Therefore,
The length of the rectangular trampoline will be
[tex]\sf{ = (W + 6 )ft }[/tex]
Now,
We know that,
[tex]\bold{\blue{ Area\: of\: rectangle = Length × Breath }}[/tex]
Subsitute the required values,
[tex]\sf{ 135 = w(w + 6 ) }[/tex]
[tex]\sf{ 135 = w² + 6w}[/tex]
[tex]\sf{ = w² + 6w - 135 }[/tex]
By factorization method,
[tex]\sf{ = w² - 9w + 15w - 135 }[/tex]
[tex]\sf{ = w( w - 9) + 15( w - 9)}[/tex]
[tex]\sf{ = ( w + 15) ( w - 9)}[/tex]
Therefore,
Width of the rectangular trampoline
[tex]\sf{ w = - 15 \: or\: w = 9 }[/tex]
[ Width of the rectangle can never be negative ]
Thus , The width of the rectangular trampoline is 9 feet
[tex]\bold{\pink{ Hence\:, Option \:D\: is\: correct }}[/tex]
Answer :
- 9 feet.
Explanation :
Given :
- The area of a rectangular trampoline is 135 ft².
- The length of the trampoline is 6 ft greater than the width of the trampoline.
To find :
- The width of the trampoline.
Solution :
Let us assume the width of the rectangle as w and therefore the length becomes (w + 6) .
We know that,
[tex]{ \qquad \dashrightarrow \bf{Length \times Width =Area _{(rectangle)} }}[/tex]
Substituting the values in the formula :
[tex] {\qquad \sf \dashrightarrow (w + 6)w = 135}[/tex]
[tex]{\qquad \sf \dashrightarrow {w}^{2} + 6w = 135}[/tex]
[tex]{\qquad \sf \dashrightarrow {w}^{2} + 6w - 135 = 0}[/tex]
[tex]{\qquad \sf \dashrightarrow {w}^{2} + 15w - 9w - 135 = 0}[/tex]
[tex]{\qquad \sf \dashrightarrow {w}(w + 15) - 9(w + 15) = 0}[/tex]
[tex]{\qquad \sf \dashrightarrow (w + 15) (w - 9) = 0}[/tex]
[tex]{\qquad \sf \dashrightarrow (w + 15) = 0}[/tex]
[tex]{\qquad \sf \dashrightarrow w = - 15}[/tex]
[tex]{\qquad \sf \dashrightarrow (w - 9) = 0}[/tex]
[tex]{\qquad \sf \dashrightarrow w = 9}[/tex]
- Whether, w = (– 15) or 9 .
The width of the rectangle cannot be negative therefore the width of the rectangle must be 9 feet .