Respuesta :

Required Answer :-

So as u can see we have to find whether the value of x is correct or not.

So:-

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf 2 {x}^{2} - 54 = 18[/tex]

First write the equation

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf 2 {(6)}^{2} - 54 = 18[/tex]

Put value of x I.e 6 in the equation.

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf 2 \times (6 \times 6 )- 54 = 18[/tex]

To make it easy to understand I have covered square above 6 in it's original form I.e 6 ×6

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf 2 \times (36)- 54 = 18[/tex]

multiply 6 with 6 to get 36

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf 72- 54 = 18[/tex]

open the brakets and multiple 2 with 36 and then subtract 72 with 54

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \bf18 = 18[/tex]

[tex] \\ \\ [/tex]

[tex]\orange{\bf \dag LHS = RHS \dag}[/tex]

[tex] \\ \\ [/tex]

Hence proved ~