Answer:
z = 18
x = 26 and y = 16
Step-by-step explanation:
Given:
[tex]x + y = 42[/tex]
[tex]\dfrac{x}{13}=\dfrac{y}{8}=\dfrac{z}{9}[/tex]
Rewrite [tex]x + y = 42[/tex] to make [tex]y[/tex] the subject:
[tex]\implies y=42-x[/tex]
Substitute this into [tex]\dfrac{x}{13}=\dfrac{y}{8}[/tex]:
[tex]\implies \dfrac{x}{13}=\dfrac{42-x}{8}[/tex]
Cross multiply:
[tex]\implies 8x=13(42-x)[/tex]
[tex]\implies 8x=546-13x[/tex]
[tex]\implies 21x=546[/tex]
[tex]\implies x=26[/tex]
Substitute found value of x into [tex]x + y = 42[/tex] and solve for y:
[tex]\implies 26 + y = 42[/tex]
[tex]\implies y=16[/tex]
Substitute found value of y into [tex]\dfrac{y}{8}=\dfrac{z}{9}[/tex] and solve for z:
[tex]\implies \dfrac{16}{8}=\dfrac{z}{9}\\\\\implies 2=\dfrac{z}{9}\\\\\implies 18=z[/tex]