Can anyone help me with 4 and 5? I don’t think I did them correctly
![Can anyone help me with 4 and 5 I dont think I did them correctly class=](https://us-static.z-dn.net/files/de7/0dbeb06d98bfd78ed2161a384a50a47c.png)
[tex]\\ \tt\Rrightarrow tan^2x=3[/tex]
[tex]\\ \tt\Rrightarrow tanx=\sqrt{3}[/tex]
[tex]\\ \tt\Rrightarrow x=tan^{-1}{\sqrt{3}}[/tex]
#5
[tex]\\ \tt\Rrightarrow tanxsinx-tanx[/tex]
[tex]\\ \tt\Rrightarrow tanx(sinx-1)[/tex]
[tex]\\ \tt\Rrightarrow sinx/cosx(cos^2x)[/tex]
[tex]\\ \tt\Rrightarrow sinxcosx[/tex]
Answer:
4) [tex]x=\dfrac{1}{3} \pi \pm \pi n, \ x=\dfrac{2}{3} \pi \pm \pi n[/tex]
5) [tex]tan(x)[sin(x)-1][/tex]
Step-by-step explanation:
Question 4
[tex]tan^2(x)=3[/tex]
square root both sides:
[tex]\implies \sqrt{ tan^2(x)}=\pm \sqrt{3}[/tex]
[tex]\implies tan(x)=\pm \sqrt{3}[/tex]
General solutions for [tex]tan(x)=\sqrt{3}[/tex]:
[tex]\implies x=\dfrac{1}{3} \pi \pm \pi n[/tex]
General solutions for [tex]tan(x)=-\sqrt{3}[/tex]
[tex]\implies x=\dfrac{2}{3} \pi \pm \pi n[/tex]
Combine all solutions:
[tex]\implies x=\dfrac{1}{3} \pi \pm \pi n, \ x=\dfrac{2}{3} \pi \pm \pi n[/tex]
Question 5
[tex]tan(x)sin(x)-tan(x)[/tex]
Factor out the common term [tex]tan(x)[/tex]:
[tex]\implies tan(x)[sin(x)-1][/tex]