astiosq
contestada

without using a calculator show that (49/16) raised to the power of negative 3/2 equals 64/343
show all steps ​

Respuesta :

Answer:

Step-by-step explanation:

Apply exponent rule  [tex]a^{-b}=\dfrac{1}{a^b}[/tex]:

[tex]\implies \left( \dfrac{49}{16} \right) ^{-{\frac32}}=\dfrac{1}{\left( \dfrac{49}{16} \right) ^{\frac32}}[/tex]

Apply exponent rule [tex]\left( \dfrac{a}{b} \right) ^c=\dfrac{a^c}{b^c}[/tex]:

[tex]\implies \dfrac{1}{\left( \dfrac{49}{16} \right) ^{\frac32}}=\dfrac{1}{\left( \dfrac{49^{\frac32}}{16^{\frac32}} \right) }[/tex]

Factor the 49 and 16:

[tex]\implies \dfrac{1}{\left( \dfrac{49^{\frac32}}{16^{\frac32}} \right) }=\dfrac{1}{\left( \dfrac{(7^2)^{\frac32}}{(4^2)^{\frac32}} \right) }[/tex]

Apply exponent rule [tex](a^b)^c=a^{bc}[/tex]:

[tex]\implies \dfrac{1}{\left( \dfrac{(7^2)^{\frac32}}{(4^2)^{\frac32}} \right) }= \dfrac{1}{\left( \dfrac{7^3}{4^3} \right) }=\dfrac{1}{\left( \dfrac{343}{64} \right) }[/tex]

Apply fraction rule [tex]\dfrac{1}{\frac{a}{b}}=\dfrac{b}{a}[/tex]

[tex]\implies \dfrac{1}{\left( \dfrac{343}{64} \right) }=\dfrac{64}{343}[/tex]

ACCESS MORE