Help me, please!

In figure 2 below, c ʇ d, if m∠3 = 90, what is the measurement in each of other angles?

If two angles form a linear pair, then
they are?​

Help me pleaseIn figure 2 below c ʇ d if m3 90 what is the measurement in each of other anglesIf two angles form a linear pair then they are class=

Respuesta :

∠3= ∠1= 90° [Vertically Opposite angles]

∠3+∠2=180° [Linear pair]

90+∠2=180°

∠2 = 180-90

∠2= 90°

∠2=∠4= 90° [Vertically Opposite angles]

[tex]\red{ \rule{35pt}{2pt}} \orange{ \rule{35pt}{2pt}} \color{yellow}{ \rule{35pt} {2pt}} \green{ \rule{35pt} {2pt}} \blue{ \rule{35pt} {2pt}} \purple{ \rule{35pt} {2pt}}[/tex]

Measures of all angles in order⤵️

  • ∠1= 90°
  • ∠2= 90°
  • ∠3= 90°
  • ∠4= 90°

Answer:

All the angles form 90°.

Linear pairs = ∠1 + ∠2, ∠1 + ∠4, ∠2 + ∠3,  ∠3 + ∠4

Step-by-step explanation:

If, ∠3 = 90°, then,

∠1 = 90° (vertically opposite angles)

∠2 = 90° (linear pair, 180° - 90° [∠3] = 90°)

∠4 = 90° (linear pair, 180° - 90° [∠3] = 90°)

Linear pairs form 180°. So,

∠1 + ∠2, ∠1 + ∠4, ∠2 + ∠3,  ∠3 + ∠4 are linear pairs.

Hope it helps ⚜

ACCESS MORE