[tex] \huge \sf \dag \: Answer : [/tex]
[tex] \rm 3 {x}^{2} + 22x - 45[/tex]
The values of a, b, and c are obtained, namely
with the values of a, b, and c above we determine the value of x, then :
[tex] \longmapsto \sf x_{1,2} = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
[tex] \longmapsto \sf x_{1,2} = \frac{ - 22 \pm \sqrt{ {22}^{2} - 4(3)( - 45)} }{2(3)} [/tex]
[tex] \longmapsto \sf x_{1,2} = \frac{ - 22 \pm \sqrt{484 - 4( - 135)} }{6} [/tex]
[tex] \longmapsto \sf x_{1,2} = \frac{ - 22 \pm \sqrt[]{484 + 540} }{6} [/tex]
[tex] \longmapsto \sf x_{1,2} = \frac{ - 22 \pm \sqrt{1.024} }{6} [/tex]
[tex] \longmapsto \sf x_{1,2} = \frac{ - 22 \pm32}{6} [/tex]
with that we get the values of x, namely :
[tex] \longmapsto \rm x_{1} = \bf \frac{10}{6} = 1 \frac{2}{3} [/tex]
[tex] \longmapsto \sf x_{2} = \bf - 9[/tex]
Solution Set = {1⅔, -9}
-I Hope This Helps!