Respuesta :

Given :

  • Base of triangle = 7 yd
  • Height of triangle = 10 yd

[tex] \\ \\ [/tex]

To find:

  • Area of triangle

[tex] \\ \\ [/tex]

We know:-

When base and height of triangle is given we use this formula:

[tex] \bigstar \boxed{ \rm Area \: of \: triangle = \frac{base \times height}{2} }[/tex]

[tex] \\ \\ [/tex]

So:-

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \: Area \: of \: triangle = \dfrac{base \times height}{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \: Area \: of \: triangle = \dfrac{7 \times 10}{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \: Area \: of \: triangle = \dfrac{7 \times 5 \times2 }{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \: Area \: of \: triangle = \dfrac{7 \times 5 \times\cancel2 }{\cancel2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \: Area \: of \: triangle = \dfrac{7 \times 5 \times1 }{1} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \: Area \: of \: triangle =7 \times 5[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \bf \: Area \: of \: triangle =35 {yd}^{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \therefore \underline{\textsf{ \textbf {\: Area \: of \: triangle = \red{35}}} { \red{\bf{yd} }^{ \red2} }}[/tex]

[tex] \\ \\ [/tex]

know more :-

[tex]\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}[/tex]]

ACCESS MORE