Respuesta :

Given :

[tex] \boxed{ \rm \frac{y}{m} + \frac{y}{n} = p}[/tex]

[tex] \\ \\ [/tex]

To find:

[tex] \\ [/tex]

  • Value of y

[tex] \\ \\ [/tex]

Step by step expansion:

[tex] \dashrightarrow \sf\dfrac{y}{m} + \dfrac{y}{n} = p[/tex]

write the equation

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{\frac{y \times mn}{m} + \frac{y \times mn}{n}}{mn} = p[/tex]

Add y/n with y/n and we will get Lcm as mn

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{\frac{y \times \cancel mn}{\cancel m} + \frac{y \times m\cancel n}{\cancel n}}{mn} = p[/tex]

Cancel the similar terms

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{\frac{y \times n}{1} + \frac{y \times m}{1}}{mn} = p[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{yn + ym}{mn} = p[/tex]

remove 1 as denominator

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{y(n + m)}{mn} = p[/tex]

take y as common

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{(n + m)}{mn} = \dfrac{p}{y} [/tex]

transfer y to other side as denominator of p

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{mn}{(n + m)} = \dfrac{y}{p} [/tex]

reciprocal the whole equation

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf \dfrac{mnp}{(n + m)} = \dfrac{y}{1} [/tex]

transfer p other side as numerator

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \boxed{ \bf y = \dfrac{mnp}{(n + m)} }[/tex]

[tex] \\ \\ [/tex]

[tex] \therefore \red {\underline {\textbf{\textsf{Option 2 i.e \{y= mnp/(m+n) \} is correct }}}}[/tex]

The value of y from the given expression is y  = mnp/n+m

Subject of formula

Given the following expression

y/m + y/n = p

We are to make y the subject of the formula

yn+ym/mn = p

yn + ym = mnp
y(n+m) = mnp

Divide both sides by n+m

y(n+m)/nmp = mnp/n+m
y  = mnp/n+m

Hence the value of y from the given expression is y  = mnp/n+m

Learn more on subject of formula here: https://brainly.com/question/657646

ACCESS MORE