Respuesta :
Step-by-step explanation:
Given that: [√(1+x)/{√(1+x) - √(1-x)}] - [(1-x)/{√(1-x²) + x -1}]
Here, we see that in first fraction the denominator is √(1+x)-√(1-x) , as we know that the rational factor √(a+b)-√(a-b) is √(a+b)+(a-b). Therefore, the rationalising factor of √(1+x)-√(1-x) is √(1+x)+√(1-x). On rationalising the denominator them.
= [√(1+x)/{√(1+x)-√(1-x)}] * [{√(1+x)+√(1-x)}/{√(1+x)+√(1-x)}] - [(1-x)/{√(1-x²) + x -1}]
= [{√(1+x)(√(1+x)+√(1-x)}/{√(1+x)-√(1-x) - √(1+x)+√(1-x)}] - [(1-x)/{√(1-x²) + x -1}]
Now, comparing the first fraction denominator with (a-b)(a+b), we get
- a = √(1+x)
- b = √(1-x)
- a = √(1+x)
- b = √(1-x)
Using identity (a-b)(a+b) = a² - b², we get
= [{√(1+x)(√(1+x)+√(1-x)}/{√(1+x)² - √(1-x)²}] - [(1-x)/{√(1-x²) + x -1}]
= [{√(1+x)(√(1+x)+√(1-x)}/{(1+x) - (1-x)}] - [(1-x)/{√(1-x²) + x -1}]
Now, multiply the numerator on both brackets.
= [{√(1+x) * √(1+x) + √(1+x) * √(1-x)}/{(1+x) - (1-x)}] - [(1-x)/{√(1-x²) + x -1}]
Comparing the first fraction numerator with (a+b)(a+b) , we get
- a = √1
- b = √x
Using identity (a+b)(a+b) = (a+b)², we get
= [{√(1+x)²+ √(1+x) * √((1+x)(1-x))}/{(1+x) - (1-x)}] - [(1-x)/{√(1-x²) + x -1}]
Cancel out the first fraction denominator numbers 1 and -1 to get 0.
= [{(1+x)+√(1-x²)}/(x+x+0)] - [(1-x)/{√(1-x²) + x -1}]
= [{(1+x)+√(1-x²)}/(x+x)] - [(1-x)/{√(1-x²) + x -1}]
= [{(1+x)+√(1-x²)}/2x] - [(1-x)/{√(1-x²) + x -1}]
= [{1+x+√(1-x²)}{√(1-x²)x-1}-{(1-x)(2x)}]/[2x{√(1-x²)+x-1}]
= [√(1-x²) + x-1 + x√(1-x²) + x² - x + {√(1-x²)}² + x√(1-x²)-√(1-x²) - 2x + 2x²]/[2x{√(1-x²)+x-1}]
= {(√(1-x²) 2x -1 + 3x² + 2x√(1-x²) + 1-x² - √(1-x²)}/[2x{√(1-x²)+x-1}]
Cancel out √(1-x) and -√(1-x) in numerator.
= {-2x - 1 + 2x√(1-x²) + 3x² + 1 - x²}/[2x{√(1-x²)}+x-1}]
Cancel out -1 and 1 in numerator to get 0.
= [2x√(1-x²) - 2x + 2x²}/[2x{√(1-x²)+x-1}]
= {2x{√(1-x²)} + x - 1}]/[2x{√(1-x²)}+x-1}
= 1
Answer: Hence, the simplified form of the expression [√(1+x)/{√(1+x) - √(1-x)}] - [(1-x)/{√(1-x²) + x -1}] is 1.
Please let me know if you have any other questions.
The simplified expression of [tex]\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex] is 1
The expression is given as:
[tex]\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex]
Rationalize the first fraction
[tex]\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} * \frac{\sqrt{1 + x} + \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex]
Expand
[tex]\frac{\sqrt{1+x}(\sqrt{1 + x} + \sqrt{1 - x})}{1+x - 1+x} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex]
[tex]\frac{\sqrt{1+x}(\sqrt{1 + x} + \sqrt{1 - x})}{2x} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex]
Further, expand
[tex]\frac{1+x + \sqrt{1 - x^2}}{2x} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex]
Take LCM
[tex]\frac{(1+x+\sqrt{1-x\²}(\sqrt{1-x\²} + x-1) - (1 - x)2x}{2x(\sqrt{1 -x^2} + x + 1)}[/tex]
Expand the expression
[tex]\frac{\sqrt{1-x\²} + x-1 + x\sqrt{1-x\²} + x\² - x + (\sqrt{1-x\²})\² + x\sqrt{1-x\²}-\sqrt{1-x\²} - 2x + 2x\²}{2x(\sqrt{1-x\²}+x-1)}[/tex]
Simplify the expression
[tex]\frac{(\sqrt{1-x\²}) 2x -1 + 3x\² + 2x\sqrt{1-x\²} + 1-x\² - \sqrt{1-x\²}}{2x(\sqrt{1-x\²}+x-1)}[/tex]
Cancel out the common factor in the fraction
[tex]\frac{-2x - 1 + 2x\sqrt{1-x\²} + 3x\² + 1 - x\²}{2x(\sqrt{(1-x\²)}+x-1}[/tex]
Evaluate the like terms
[tex]\frac{-2x + 2x\sqrt{1-x\²} + 2x\²}{2x(\sqrt{(1-x\²)}+x-1}[/tex]
Factor out 2x
[tex]\frac{2x(\sqrt{(1-x\²)}+x-1}{2x(\sqrt{(1-x\²)}+x-1}[/tex]
Divide the fraction
1
Hence, the simplified expression of [tex]\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} -\frac{1-x}{\sqrt{1-x\² }+ x -1}[/tex] is 1
Read more about expressions at:
https://brainly.com/question/723406