Respuesta :

Given Equation:-

[tex] \boxed{ \tt \frac{3}{x + 5} - \frac{2}{x - 3}}[/tex]

Step by step expansion:

[tex] \dashrightarrow\sf\dfrac{3}{x + 5} - \dfrac{2}{x - 3}[/tex]

Write the equation

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{\frac{3 \times (x + 5)(x - 3)}{x + 5} - \frac{2 \times (x + 5)(x - 3)}{x - 3}}{(x + 5)(x - 3)}[/tex]

Take the lcm of the equation I.e (x + 5) (x + 3)

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{\frac{3 \times \cancel{(x + 5)}(x - 3)}{\cancel{x + 5}} - \frac{2 \times (x + 5)\cancel{(x - 3)}}{\cancel{x - 3}}}{(x + 5)(x - 3)}[/tex]

cancel like terms I.e (x + 5) with (x+ 5) and (x - 3) with (x - 3)

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{\frac{3 \times (x - 3)}{1} - \frac{2 \times (x + 5)}{1}}{(x + 5)(x - 3)}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{3 \times (x - 3)- 2 \times (x + 5)}{(x + 5)(x - 3)}[/tex]

Remove 1 as denominator

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{3x - 9- 2 (x + 5)}{(x + 5)(x - 3)}[/tex]

Multiply 3 with x - 9

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{3x - 9- 2 x - 10}{(x + 5)(x - 3)}[/tex]

Multiply - 2 with x + 5

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{3x - 2x- 9 - 10}{(x + 5)(x - 3)}[/tex]

Arrange the equation so that it would be easier to solve.

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{x- 9 - 10}{(x + 5)(x - 3)}[/tex]

Subtract 3x with 2x

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\bf\dfrac{x-19}{(x + 5)(x - 3)}[/tex]

Add -9 with - 10

[tex] \\ \\ [/tex]

[tex]\therefore \underline {\textsf{\textbf{Option \red{one} is correct}}}[/tex]

ACCESS MORE