Question 5 (12 points)
Graph the circle (x + 1)2 + (y - 3)2 = 16. Then find the distance from the center of the circle to each point below.
a. (2,1)
b. (4,1)
C. (3,3)

Respuesta :

Answer:

see attached for diagram

a) √13

b) √29

c) 4

Step-by-step explanation:

Equation of the circle:  [tex](x + 1)^2 + (y - 3)^2 = 16[/tex]

⇒ center = (-1, 3)

⇒ radius = √16 = 4

Distance between 2 points formula:

[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

a)  let (-1, 3) = [tex](x_1,y_1)[/tex]

    let (2, 1) = [tex](x_2, y_2)[/tex]

 [tex]\implies \sqrt{(2+1)^2+(1-3)^2} =\sqrt{13}[/tex]

b)  let (-1, 3) = [tex](x_1,y_1)[/tex]

    let (4, 1) = [tex](x_2, y_2)[/tex]

[tex]\implies \sqrt{(4+1)^2+(1-3)^2} =\sqrt{29}[/tex]

c)  let (-1, 3) = [tex](x_1,y_1)[/tex]

    let (3, 3) = [tex](x_2, y_2)[/tex]

[tex]\implies \sqrt{(3+1)^2+(3-3)^2} =4[/tex]

Ver imagen semsee45

Compare with (x-h)^2+(y-k)^2=r^2

  • Centre=(h,k)=(-1,3)
  • r=4

Distance to (2,1)

  • √(2+1)^2+(1-3)^2=√13

Distance to (4,1)

  • √(4+1)^2+(1-3)^2=√29

Distance to (3,3)

  • √(3+1)^2+(3-3)^2=4
Ver imagen Аноним
ACCESS MORE