30 POINTS IF YOUR COMPLETE NUMBER 5
![30 POINTS IF YOUR COMPLETE NUMBER 5 class=](https://us-static.z-dn.net/files/d3f/d04338d07e03cf5a83127c533f49971c.jpg)
Answer:
[tex]g=\frac{\sqrt{7}}{2}+1[/tex] or [tex]g=-\frac{\sqrt{7}}{2}+1[/tex]
Step-by-step explanation:
[tex]4\left(g-1\right)^2+6=13[/tex]
[tex]4\left(g-1\right)^2=13-6[/tex]
[tex]4\left(g-1\right)^2=7[/tex]
[tex]\left(g-1\right)^2=\frac{7}{4}[/tex]
[tex]g-1 = \pm\sqrt{\frac{7}{4} }[/tex]
[tex]g =\pm \sqrt{\frac{7}{4} }+1[/tex]
Final answer:
[tex]g=\frac{\sqrt{7}}{2}+1[/tex] or [tex]g=-\frac{\sqrt{7}}{2}+1[/tex]
Answer:
Step-by-step explanation:
[tex]4(g-1)^{2} +6=13[/tex]
First we expand the brackets:
[tex]4(g-1)(g-1)+6=13[/tex]
[tex](4g-4)(g-1)+6=13[/tex]
[tex]4g^{2} -4g-4g+4+6=13[/tex]
[tex]4g^{2} -8g+10=13[/tex]
Now make it into a quadratic in the form [tex]ax^{2} +bx+c=0[/tex]:
[tex]4g^{2} -8g -3=0[/tex]
Now using the quadratic formula:
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac} }{2a}[/tex]
We can solve for g:
[tex]g_{1}[/tex] = [tex]\frac{2+\sqrt{7} }{2}[/tex]
[tex]g_{2}[/tex] = [tex]\frac{2-\sqrt{7} }{2}[/tex]