Respuesta :

Answer:

[tex]x=10^{\frac14(y-5)}[/tex]

Step-by-step explanation:

[tex]y = 4 log (x) + 5[/tex]

[tex]\implies y - 5 = 4 log(x)[/tex]

[tex]\implies \dfrac14(y-5)=log(x)[/tex]

Using log law   [tex]log_a(b)=c \implies a^c=b[/tex]:

[tex]x=10^{\frac14(y-5)}[/tex]

[tex]\\ \tt\hookrightarrow 4logx+5=y[/tex]

[tex]\\ \tt\hookrightarrow 4logx=y-5[/tex]

[tex]\\ \tt\hookrightarrow logx=\dfrac{y-5}{4}[/tex]

[tex]\\ \tt\hookrightarrow x=10^{\dfrac{y-5}{4}}[/tex]

[tex]\\ \tt\hookrightarrow x=\sqrt[4]{10^{y-5}}[/tex]