Respuesta :
Answer:
[tex]x=10^{\frac14(y-5)}[/tex]
Step-by-step explanation:
[tex]y = 4 log (x) + 5[/tex]
[tex]\implies y - 5 = 4 log(x)[/tex]
[tex]\implies \dfrac14(y-5)=log(x)[/tex]
Using log law [tex]log_a(b)=c \implies a^c=b[/tex]:
[tex]x=10^{\frac14(y-5)}[/tex]
[tex]\\ \tt\hookrightarrow 4logx+5=y[/tex]
[tex]\\ \tt\hookrightarrow 4logx=y-5[/tex]
[tex]\\ \tt\hookrightarrow logx=\dfrac{y-5}{4}[/tex]
[tex]\\ \tt\hookrightarrow x=10^{\dfrac{y-5}{4}}[/tex]
[tex]\\ \tt\hookrightarrow x=\sqrt[4]{10^{y-5}}[/tex]