What is the value of x?
Enter your answer in the box.
x

Answer:
x = 9
Step-by-step explanation:
In a pair of similar triangles, corresponding sides are proportional.
Therefore,
[tex]\dfrac{9}{9+72}=\dfrac{3x-20}{3x-20+56}[/tex]
[tex]\implies \dfrac{9}{81}=\dfrac{3x-20}{3x+36}[/tex]
[tex]\implies \dfrac19=\dfrac{3x-20}{3x+36}[/tex]
Cross multiply:
[tex]\implies 3x+36=9(3x-20)[/tex]
Expand brackets:
[tex]\implies 3x+36=27x-180[/tex]
Gather and combine like terms:
[tex]\implies -24x=-216[/tex]
Divide both sides by -24:
[tex]\implies x=9[/tex]
Apply Thales theorem
[tex]\\ \tt\hookrightarrow \dfrac{9}{72}=\dfrac{3x-20}{56}[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{1}{8}=\dfrac{3x-20}{56}[/tex]
[tex]\\ \tt\hookrightarrow 3x-20=56/8[/tex]
[tex]\\ \tt\hookrightarrow 3x-20=7[/tex]
[tex]\\ \tt\hookrightarrow 3x=27[/tex]
[tex]\\ \tt\hookrightarrow x=9[/tex]