Respuesta :

Answer:

x = 9

Step-by-step explanation:

In a pair of similar triangles, corresponding sides are proportional.

Therefore,

[tex]\dfrac{9}{9+72}=\dfrac{3x-20}{3x-20+56}[/tex]

[tex]\implies \dfrac{9}{81}=\dfrac{3x-20}{3x+36}[/tex]

[tex]\implies \dfrac19=\dfrac{3x-20}{3x+36}[/tex]

Cross multiply:

[tex]\implies 3x+36=9(3x-20)[/tex]

Expand brackets:

[tex]\implies 3x+36=27x-180[/tex]

Gather and combine like terms:

[tex]\implies -24x=-216[/tex]

Divide both sides by -24:

[tex]\implies x=9[/tex]

Apply Thales theorem

[tex]\\ \tt\hookrightarrow \dfrac{9}{72}=\dfrac{3x-20}{56}[/tex]

[tex]\\ \tt\hookrightarrow \dfrac{1}{8}=\dfrac{3x-20}{56}[/tex]

[tex]\\ \tt\hookrightarrow 3x-20=56/8[/tex]

[tex]\\ \tt\hookrightarrow 3x-20=7[/tex]

[tex]\\ \tt\hookrightarrow 3x=27[/tex]

[tex]\\ \tt\hookrightarrow x=9[/tex]

ACCESS MORE