Answer:
Step-by-step explanation:
1. Reflection over the x-axis: (x, y) → (x, -y)
ΔABC with A(5, 1), B(-2, 6) C(-3, 4), after a reflection along the x-axis becomes A'(5, -1), B'(-2, -6) C'(-3, -4)
2. Counterclockwise rotation of 90° about the origin: (x, y) → (-y, x)
ΔXYZ with X(1, 2), Y(9, 7) Z(10, 1), after a counterclockwise rotation of 90° about the origin the coordinates are X'(-2,1) Y'(-7,9) Z'(-1,10)
3.
Parallelogram WXYZ with W(2, -3), X(-5, -1), Y(-1, 2), Z(6, 0), has the image after a translation of (x, y) → (x – 5, y + 2) as
W'(2-5, -3+2), X'(-5-5, -1+2), Y'(-1-5, 2+2), Z'(6-5, 0+2)
W'(-3, -1), X'(-10, 1), Y'(-6, 4), Z'(1, 2)
The coordinates of W'(-3, -1)
See Graphs...