write the equation in slope-intercept form then change it to standard form with integer coefficients.

(6,8),m=2

(4,1),m=-1/2

(1,5),m=4/5

Respuesta :

Answer:

1. Slope-intercept form:   [tex]y = 2x - 4[/tex]

Standard form:   [tex]2x - y = 4[/tex]

2. Slope-intercept form:  [tex]y = \dfrac12x - 1[/tex]

Standard form:             [tex]x - 2y = 2[/tex]

3. Slope-intercept form:   [tex]y = \dfrac45x + \dfrac{21}{5}[/tex]

Standard form:            [tex]4x -5y = - 21[/tex]

Step-by-step explanation:

Slope intercept form:   [tex]y = mx + b[/tex]

where:

  • [tex]y[/tex] = y-coordinate
  • [tex]m[/tex] = slope
  • [tex]x[/tex] = x-coordinate
  • [tex]b[/tex] = y-intercept

Standard form:  [tex]Ax + By = C[/tex]

[tex]\textsf{1. as} \ m=2: \ \ y = 2x + b[/tex]

   [tex]\textsf{at} \ (6, 8): \ \ 8 = 2(6) + b[/tex]

   [tex]\implies b = -4[/tex]

Slope-intercept form:   [tex]y = 2x - 4[/tex]

Standard form:   [tex]2x - y = 4[/tex]

[tex]\textsf{2. as} \ \ m = \dfrac12: \ \ y = \dfrac12x + b[/tex]

    [tex]\textsf{at} \ (4, 1): \ \ 1 = \dfrac12(4) + b[/tex]

    [tex]\implies b = -1[/tex]

Slope-intercept form:  [tex]y = \dfrac12x - 1[/tex]

Standard form:             [tex]x - 2y = 2[/tex]

[tex]\textsf{3. as} \ \ m = \dfrac45: \ \ y = \dfrac45x + b[/tex]

   [tex]\textsf{at} \ (1,5): \ \ 5 = \dfrac45(1) + b[/tex]

   [tex]\implies b = \dfrac{21}{5}[/tex]

Slope-intercept form:   [tex]y = \dfrac45x + \dfrac{21}{5}[/tex]

Standard form:            [tex]4x -5y = - 21[/tex]

ACCESS MORE