The functions f, g, h and k are [tex]f(x)=15\cdot 3^{x}[/tex], [tex]g(x) = 26\cdot 0.5^{x}[/tex], [tex]h(x) = 7\cdot 8^{x}[/tex] and [tex]k(x) = 280\cdot 0.143^{x}[/tex], respectively.
How to model monotonous functions
A function is monotonous when is either increasing or decreasing for all value of [tex]x[/tex]. A power function is a case of a monotonous function, whose model is defined below:
[tex]y = y_{o}\cdot r^{x}[/tex] (1)
Where:
- [tex]y_{o}[/tex] - Initial value
- [tex]r[/tex] - Increase rate
- [tex]x[/tex] - Independent variable
- [tex]y[/tex] - Dependent variable
Now we proceed to define each function:
Case 1 (f(x) - Initial value: 5, increase rate: 3)
[tex]f(x)=15\cdot 3^{x}[/tex] (2)
Case 2 (g(x) - Initial value: 26, increase rate: 0.5)
[tex]g(x) = 26\cdot 0.5^{x}[/tex] (3)
Case 3 (h(x) - Initial value: 7, increase rate: 8)
[tex]h(x) = 7\cdot 8^{x}[/tex] (4)
Case 4 (k(x) - Initial value: 280, increase rate: 0.143)
[tex]k(x) = 280\cdot 0.143^{x}[/tex] (5)
The functions f, g, h and k are [tex]f(x)=15\cdot 3^{x}[/tex], [tex]g(x) = 26\cdot 0.5^{x}[/tex], [tex]h(x) = 7\cdot 8^{x}[/tex] and [tex]k(x) = 280\cdot 0.143^{x}[/tex], respectively. [tex]\blacksquare[/tex]
To learn more on functions, we kindly invite to check this verified question: https://brainly.com/question/5245372