do anyone know what is the answer
![do anyone know what is the answer class=](https://us-static.z-dn.net/files/d58/00a5461c795858161af3395300c4472b.png)
"first principle" means "use the limit definition of the derivative":
[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{f(x+h) - f(x)}h[/tex]
For f(x) = y = ax² + b, the derivative is
[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{(a(x+h)^2+b) - (ax^2+b)}h[/tex]
[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{a(x^2+2xh+h^2) - ax^2}h[/tex]
[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{2axh+ah^2}h[/tex]
[tex]f'(x) = \displaystyle \lim_{h\to0} (2ax+ah) = \boxed{2ax}[/tex]
We are given with a function y = ax² + b and are asked to find it's derivative by first principle of differentiation , so by first principle we know that :-
Now , here f(x) is y = ax² + b , so , f(x+h) will be a(x+h)²+b . Now by first principle ;
[tex]{:\implies \quad \displaystyle \sf y^{\prime}=\lim_{h\to 0}\dfrac{\{a(x+h)^{2}+b\}-(ax^{2}+b)}{h}}[/tex]
[tex]{:\implies \quad \displaystyle \sf y^{\prime}=\lim_{h\to 0}\dfrac{\{a(x^{2}+h^{2}+2xh)+b\}-(ax^{2}+b)}{h}\quad \qquad \{\because (a+b)^{2}=a^{2}+b^{2}+2ab\}}[/tex]
[tex]{:\implies \quad \displaystyle \sf y^{\prime}=\lim_{h\to 0}\dfrac{\cancel{ax^{2}}+ah^{2}+2axh+\cancel{b}-\cancel{ax^{2}}-\cancel{b}}{h}}[/tex]
[tex]{:\implies \quad \displaystyle \sf y^{\prime}=\lim_{h\to 0}\dfrac{\cancel{h}(ah+2ax)}{\cancel{h}}}[/tex]
[tex]{:\implies \quad \displaystyle \sf y^{\prime}=a\times 0+2ax}[/tex]
[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{y^{\prime}=2ax}}}[/tex]