The variance of a distribution is the square of the standard deviation
The variance of the data is 2.2
Start by calculating the expected value using:
[tex]E(x) = \sum x* P(x)[/tex]
So, we have:
[tex]E(x) = 1 * 0.3 + 2* 0.2 +3 * 0.2 + 4 * 0.1 + 5 * 0.2[/tex]
This gives
[tex]E(x) = 2.7[/tex]
Next, calculate E(x^2) using:
[tex]E(x^2) = \sum x^2* P(x)[/tex]
So, we have:
[tex]E(x^2) = 1^2 * 0.3 + 2^2* 0.2 +3^2 * 0.2 + 4^2 * 0.1 + 5^2 * 0.2[/tex]
[tex]E(x^2) = 9.5[/tex]
The variance is then calculated as:
[tex]Var(x) = E(x^2) - (E(x))^2[/tex]
So, we have:
[tex]Var(x) = 9.5 - 2.7^2[/tex]
[tex]Var(x) = 2.21[/tex]
Approximate
[tex]Var(x) = 2.2[/tex]
Hence, the variance of the data is 2.2
Read more about variance at:
https://brainly.com/question/15858152