Respuesta :
The second sample has the least error percentage.
Error percentage
The amount of mistakes is expressed as if it is a part of the total which is a hundred. The ratio can be expressed as a fraction of 100. The word percent means per 100. It is represented by the symbol ‘%’.
Given
Sample Meqasured amount Actual amount
1 14 13.7
2 24 24.4
3 25 25.8
4 39 40.2
To find
The error percentage.
How to find the error percentage?
We know the formula for the error percentage.
[tex]\rm \% Error = \dfrac{Measured \ value- Actual\ value}{Actual\ value} * 100[/tex]
For the first sample
[tex]\rm \% Error = \dfrac{Measured \ value- Actual\ value}{Actual\ value} * 100\\\\ \% Error = \dfrac{14 - 13.7}{13.7}*100\\\\ \% Error = 2.19 \%[/tex]
For the second sample
[tex]\rm \% Error = \dfrac{Measured \ value- Actual\ value}{Actual\ value} * 100\\\\ \% Error = \dfrac{24.4 - 24}{24.4}*100\\\\ \% Error = 1.64 \%[/tex]
For the third sample
[tex]\rm \% Error = \dfrac{Measured \ value- Actual\ value}{Actual\ value} * 100\\\\ \% Error = \dfrac{25.8 - 25}{25.8}*100\\\\ \% Error = 3.1 \%[/tex]
For the fourth sample
[tex]\rm \% Error = \dfrac{Measured \ value- Actual\ value}{Actual\ value} * 100\\\\ \% Error = \dfrac{40.2-39}{40.2}*100\\\\ \% Error = 2.99 \%[/tex]
The second sample has the least error percentage.
More about the error link is given below.
https://brainly.com/question/13286220
Otras preguntas
