Respuesta :

Answer:

The volume of material used in the pipe is 1507.2 cm³.

Step-by-step explanation:

As per the provided information in the question, we have :

  • ➛ Height of wall = 30 cm
  • ➛ Diameter of inner wall = 15 cm
  • ➛ Diameter of outer wall = 17 cm
  • ➛ Radius of inner wall = 15/2 = 7.5 cm
  • ➛ Radius of outer wall = 17/2 = 8.5 cm

Here's the required formula to find the volume of material used in the pipe :

[tex]\quad{\longrightarrow{\pmb{\sf{ V = \pi h\Big(Outer}^{2} - {Inner}^{2}\Big)}}}[/tex]

  • ↝ V = Volume
  • ↝ π = 3.14
  • ↝ h = height
  • ↝ Outer = Outer radius
  • ↝ Inner = Inner radius

Substituting all the given values in the formula to find the volume of material used in the pipe :

[tex]\quad{\twoheadrightarrow{\sf{ V =\pi h\Big({Outer}^{2} - {Inner}^{2}\Big)}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =3.14 \times 30\Big({(8.5)}^{2} - {(7.5)}^{2}\Big)}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =94.2\Big((8.5 \times 8.5) - (7.5 \times 7.5)\Big)}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =94.2\Big((72.25) - (56.25)\Big)}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =94.2\Big(72.25 - 56.25\Big)}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =94.2\Big( \: 16 \: \Big)}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =94.2 \times 16}}}[/tex]

[tex]\quad{\twoheadrightarrow{\sf{ V =1507.2}}}[/tex]

[tex]\quad\star{\underline{\boxed{\sf{\red{ V =1507.2 \: {cm}^{3}}}}}}[/tex]

Hence, the volume of material used in the pipe is 1507.2 cm³.

[tex]\rule{300}{2.5}[/tex]

The volume of the material used is 1507.2cm^3

Data;

  • height = 30cm
  • inner diameter = 15cm; radius = 7.5cm
  • outer diameter = 17cm; radius = 8.5cm
  • π = 3.14

Volume of a Cylinder

The formula of volume of a cylinder is given as

[tex]v = \pi r^2 h[/tex]

But in this case, we have to find the difference between the outer radius and the inner radius.

[tex]v = \pi h(r_2^2 - r_1^2)\\[/tex]

Let's substitute the values and solve.

[tex]V = 3.14 * 30 * (8.5^2 - 7.5^2)\\v = 94.2 * (16\\v = 94.2 * 16\\v = 1507.2cm^3[/tex]

The volume of the material used is 1507.2cm^3

Learn more on volume of a cylinder here;

https://brainly.com/question/2965150

RELAXING NOICE
Relax