Respuesta :

Answer:

[tex]\displaystyle{(d+5b)^3 = d^3 + 15bd^2 + 75b^2d + 125b^3}[/tex]

Step-by-step explanation:

The Binomial Theorem states that:

[tex]\displaystyle{(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1+\binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^{n-n}y^n}[/tex]

Note that:

[tex]\displaystyle{_n C _r = \binom{n}{r} = \dfrac{_n P _r}{r!} = \dfrac{n!}{(n-r)!r!}}[/tex]

Therefore, first, we will write the expansion:

[tex]\displaystyle{(d+5b)^3 = \binom{3}{0}d^3(5b)^0 + \binom{3}{1}d^2(5b)^1+\binom{3}{2}d^1(5b)^2 + \binom{3}{3}d^0(5b)^3}[/tex]

Evaluate each terms:

[tex]\displaystyle{(d+5b)^3=\dfrac{3!}{3!0!}d^3 + \dfrac{3!}{2!1!}d^25b+\dfrac{3!}{1!2!}25b^2d + \dfrac{3!}{0!3!}125b^3}\\\\\displaystyle{(d+5b)^3 = d^3 + 15bd^2 + 75b^2d + 125b^3}[/tex]

Henceforth, [tex]\displaystyle{(d+5b)^3 = d^3 + 15bd^2 + 75b^2d + 125b^3}[/tex] is the expansion.

ACCESS MORE
EDU ACCESS
Universidad de Mexico