Answer:
x = 15√3m , y = 3.75m
Explanation:
According to the question ,
And we need to find out ,
As we know that , at any time t , the horizontal displacement (x) is given by ,
[tex]\longrightarrow[/tex] x = u cos[tex]\theta[/tex]t
[tex]\longrightarrow[/tex] x = 20 * cos30° * 1.5 m
[tex]\longrightarrow[/tex]x = 20 * √3/2 * 3/2 m
[tex]\longrightarrow[/tex] x = 15√3 m .
[tex]\rule{200}2[/tex]
For finding the vertical distance , let's find range first .
[tex]\longrightarrow[/tex] R = u²sin2[tex]\theta[/tex]/g
[tex]\longrightarrow[/tex] R = (20)² * sin60° / 10 m
[tex]\longrightarrow[/tex]R = 400 * √3/10 *2
[tex]\longrightarrow[/tex]R = 20√3 m
Now we can find the vertical displacement as ,
[tex]\longrightarrow[/tex] y = xtan[tex]\theta[/tex] ( 1 - x/R)
[tex]\longrightarrow[/tex]y = 15√3 *1/√3 ( 1-15√3/20√3)m
[tex]\longrightarrow[/tex]y = 15( 1 - 3/4)m
[tex]\longrightarrow[/tex]y = 15 * 1/4m
[tex]\longrightarrow[/tex] y = 3.75 m