PLS HELP
This question is designed to be answered without a calculator.
The solution of dy/dx = (2sqrt(y))/x passing through the point (-1,4) is y =
1. ln^2|x|+2
2. ln^2|x|+4
3. (ln^2|x|+2)^2
4. (ln^2|x|+4)^2

PLS HELP This question is designed to be answered without a calculator The solution of dydx 2sqrtyx passing through the point 14 is y 1 ln2x2 2 ln2x4 3 ln2x22 4 class=

Respuesta :

The given differential equation is separable:

[tex]\displaystyle \frac{dy}{dx} = \frac{2\sqrt y}x \implies \frac1{\sqrt y} \, dy = \frac2x \, dx[/tex]

Integrate both sides:

[tex]\displaystyle \int y^{-1/2} \, dy = \int \frac2x \, dx[/tex]

[tex]2y^{1/2} = 2\ln|x| + C[/tex]

[tex]2\sqrt y = 2 \ln|x| + C[/tex]

Given that y(-1) = 4, we find

[tex]2\sqrt4 = 2\ln|-1| + C \implies C = 4 - 2\ln(1) = 4[/tex]

Then

[tex]2\sqrt y = 2 \ln|x| + 4[/tex]

Solve for y :

[tex]\sqrt y = \ln|x| + 2[/tex]

[tex]\left(\sqrt y\right)^2 = \left(\ln|x| + 2\right)^2[/tex]

[tex]\boxed{y = \left(\ln|x| + 2\right)^2}[/tex]

RELAXING NOICE
Relax