The given differential equation is separable:
[tex]\displaystyle \frac{dy}{dx} = \frac{2\sqrt y}x \implies \frac1{\sqrt y} \, dy = \frac2x \, dx[/tex]
Integrate both sides:
[tex]\displaystyle \int y^{-1/2} \, dy = \int \frac2x \, dx[/tex]
[tex]2y^{1/2} = 2\ln|x| + C[/tex]
[tex]2\sqrt y = 2 \ln|x| + C[/tex]
Given that y(-1) = 4, we find
[tex]2\sqrt4 = 2\ln|-1| + C \implies C = 4 - 2\ln(1) = 4[/tex]
Then
[tex]2\sqrt y = 2 \ln|x| + 4[/tex]
Solve for y :
[tex]\sqrt y = \ln|x| + 2[/tex]
[tex]\left(\sqrt y\right)^2 = \left(\ln|x| + 2\right)^2[/tex]
[tex]\boxed{y = \left(\ln|x| + 2\right)^2}[/tex]