[25 POINTS] The approximate change in the value of f(x) = sqrt(2(x-1)) at x = 3 using differentials with dx = 0.01 is

25 POINTS The approximate change in the value of fx sqrt2x1 at x 3 using differentials with dx 001 is class=

Respuesta :

Answer:

[tex]\frac{1}{200}[/tex]

Step-by-step explanation:

Find the derivative of the function when x=3

[tex]y=\sqrt{2(x-1)}[/tex]

[tex]\frac{dy}{dx}=\frac{1}{\sqrt{2(x-1)}}[/tex]

[tex]\frac{dy}{dx}=\frac{1}{\sqrt{2(3-1)}}[/tex]

[tex]\frac{dy}{dx}=\frac{1}{\sqrt{2(2)}}[/tex]

[tex]\frac{dy}{dx}=\frac{1}{\sqrt{4}}[/tex]

[tex]\frac{dy}{dx}=\frac{1}{2}[/tex]

Since the change in the value of the function is [tex]dy[/tex] and we know that the change in x is [tex]dx=0.01[/tex], then we have:

[tex]\frac{dy}{dx}=\frac{1}{2}[/tex]

[tex]dy=\frac{1}{2}dx[/tex]

[tex]dy=\frac{1}{2}(0.01)[/tex]

[tex]dy=\frac{1}{200}[/tex]

Therefore, the 2nd option is correct

RELAXING NOICE
Relax