[25 POINTS] The approximate change in the value of f(x) = sqrt(2(x-1)) at x = 3 using differentials with dx = 0.01 is

Answer:
[tex]\frac{1}{200}[/tex]
Step-by-step explanation:
Find the derivative of the function when x=3
[tex]y=\sqrt{2(x-1)}[/tex]
[tex]\frac{dy}{dx}=\frac{1}{\sqrt{2(x-1)}}[/tex]
[tex]\frac{dy}{dx}=\frac{1}{\sqrt{2(3-1)}}[/tex]
[tex]\frac{dy}{dx}=\frac{1}{\sqrt{2(2)}}[/tex]
[tex]\frac{dy}{dx}=\frac{1}{\sqrt{4}}[/tex]
[tex]\frac{dy}{dx}=\frac{1}{2}[/tex]
Since the change in the value of the function is [tex]dy[/tex] and we know that the change in x is [tex]dx=0.01[/tex], then we have:
[tex]\frac{dy}{dx}=\frac{1}{2}[/tex]
[tex]dy=\frac{1}{2}dx[/tex]
[tex]dy=\frac{1}{2}(0.01)[/tex]
[tex]dy=\frac{1}{200}[/tex]
Therefore, the 2nd option is correct