Let f(x) = e^(-1/2(x^2)) Which table describes the concavity of f?

Answer:
Concave Up: x<-1 and x>1
Concave Down: -1<x<1
Step-by-step explanation:
To determine the intervals of concavity for a continuous function f, we must determine the second derivative and figure out at what points its sign changes (aka. our inflection points):
[tex]f(x)=e^{-\frac{1}{2}x^2}\\\\f'(x)=\frac{d}{dx}(-\frac{1}{2}x^2)*e^{-\frac{1}{2}x^2}\\\\f'(x)=-xe^{-\frac{1}{2}x^2}\\\\f''(x)=[\frac{d}{dx}(-x)](e^{-\frac{1}{2}x^2})+(-x)(\frac{d}{dx}e^{-\frac{1}{2}x^2})\\ \\f''(x)=-e^{-\frac{1}{2}x^2}+x^2e^{-\frac{1}{2}x^2}\\\\f''(x)=e^{-\frac{1}{2}x^2}(x^2-1)[/tex]
Next, we determine where [tex]f''(x)=0[/tex] to find our inflection points:
[tex]0=-e^{-\frac{1}{2}x^2}(x^2-1)\\\\x=-1,x=1[/tex]
Our intervals of concavity can be determined by testing points around our inflection points. I will use the points [tex]x=-2[/tex] and [tex]x=2[/tex]:
[tex]f''(-2)=e^{-\frac{1}{2}(-2)^2}((-2)^2-1)=e^{-2}(4-1)=\frac{3}{e^2}>0\\ \\\\f''(2)=e^{-\frac{1}{2}(2)^2}(2^2-1)=e^{-2}(4-1)=\frac{3}{e^2}>0[/tex]
Since the factor [tex]x^2-1[/tex] is a second-order polynomial with a leading positive coefficient, we know that the sign is negative in the interval between the roots, and positive outside. Therefore:
Concave Downward: [tex](-\infty,-1) \cup(1,\infty)[/tex]
Concave Upward: [tex](-1,1)[/tex]
This means that the 4th option is correct. Refer to the graph for a visual.