Charge q1 = +2.00 μC is at -0.500 m along the x axis. Charge q2 = -2.00 μC is at 0.500 m along the x axis. Charge q3 = 2.00 μC is at 0.500 m along the y axis. What is the magnitude of electrical force on charge q3 due to the others?

Respuesta :

The magnitude of electrical force on charge [tex]q_{3}[/tex] due to the others is 0.102 newtons.

How to calculate the electrical force experimented on a particle

The vector position of each particle respect to origin are described below:

[tex]\vec r_{1} = (-0.500, 0)\,[m][/tex]

[tex]\vec r_{2} = (+0.500, 0)\,[m][/tex]

[tex]\vec r_{3} = (0, +0.500)\,[m][/tex]

Then, distances of the former two particles particles respect to the latter one are found now:

[tex]\vec r_{13} = (+0.500, +0.500)\,[m][/tex]

[tex]r_{13} = \sqrt{\vec r_{13}\,\bullet\,\vec r_{13}} = \sqrt{(0.500\,m)^{2}+(0.500\,m)^{2}}[/tex]

[tex]r_{13} =\frac{\sqrt{2}}{2}\,m[/tex]

[tex]\vec r_{23} = (-0.500, +0.500)\,[m][/tex]

[tex]r_{23} = \sqrt{\vec r_{23}\,\bullet \,\vec r_{23}} = \sqrt{(-0.500\,m)^{2}+(0.500\,m)^{2}}[/tex]

[tex]r_{23} =\frac{\sqrt{2}}{2}\,m[/tex]

The resultant force is found by Coulomb's law and principle of superposition:

[tex]\vec R = \vec F_{13}+\vec F_{23}[/tex] (1)

Please notice that particles with charges of same sign attract each other and particles with charges of opposite sign repeal each other.

[tex]\vec R = \frac{k\cdot q_{1}\cdot q_{3}}{r_{13}^{2}}\cdot \vec u_{13} +\frac{k\cdot q_{2}\cdot q_{3}}{r_{23}^{2}}\cdot \vec u_{23}[/tex] (2)

Where:

  • [tex]k[/tex] - Electrostatic constant, in newton-square meters per square Coulomb.
  • [tex]q_{1}[/tex], [tex]q_{2}[/tex], [tex]q_{3}[/tex] - Electric charges, in Coulombs.
  • [tex]r_{13}[/tex], [tex]r_{23}[/tex] - Distances between particles, in meters.
  • [tex]\vec u_{13}[/tex], [tex]\vec u_{23}[/tex] - Unit vectors, no unit.

If we know that [tex]k = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}[/tex], [tex]q_{1} = 2\times 10^{-6}\,C[/tex], [tex]q_{2} = 2\times 10^{-6}\,C[/tex], [tex]q_{3} = 2\times 10^{-6}\,C[/tex], [tex]r_{13} =\frac{\sqrt{2}}{2}\,m[/tex], [tex]r_{23} =\frac{\sqrt{2}}{2}\,m[/tex], [tex]\vec u_{13} = \left(-\frac{\sqrt{2}}{2}, - \frac{\sqrt{2}}{2} \right)[/tex] and [tex]\vec u_{23} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)[/tex], then the vector force on charge [tex]q_{3}[/tex] is:

[tex]\vec R = \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) + \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)[/tex]

[tex]\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)\,[N][/tex]

[tex]\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N][/tex]

And the magnitude of the electrical force on charge [tex]q_{3}[/tex] ([tex]R[/tex]), in newtons, due to the others is found by Pythagorean theorem:

[tex]R = 0.102\,N[/tex]

The magnitude of electrical force on charge [tex]q_{3}[/tex] due to the others is 0.102 newtons. [tex]\blacksquare[/tex]

To learn more on Coulomb's law, we kindly invite to check this verified question: https://brainly.com/question/506926

ACCESS MORE
EDU ACCESS
Universidad de Mexico