In the diagram below, DE is parallel to AB in right triangle ABC. DE bisects AC and CB. If AD = 3, and CB = 5, what is the length of DE?
А
D

In the diagram below DE is parallel to AB in right triangle ABC DE bisects AC and CB If AD 3 and CB 5 what is the length of DE А D class=

Respuesta :

The length DE is the hypotenuse of triangle CDE

The length DE is [tex]\frac{\sqrt{61}}2[/tex]

How to determine the length DE

The given parameters are:

[tex]AD =3[/tex]

[tex]CB = 5[/tex]

Given that line DE bisects AC and CB, it means that:

[tex]CD = AD = 3[/tex]

[tex]CE = EB = 2.5[/tex] i.e. CB/2

So, we have:

[tex]DE =\sqrt{AD^2 + CE^2[/tex] --- Pythagoras theorem

Substitute known values

[tex]DE =\sqrt{3^2 + 2.5^2[/tex]

[tex]DE =\sqrt{15.25[/tex]

Express as fraction

[tex]DE =\sqrt{\frac{61}{4}[/tex]

Simplify

[tex]DE =\frac{\sqrt{61}}2[/tex]

Hence, the length DE is [tex]\frac{\sqrt{61}}2[/tex]

Read more about right triangles at:

https://brainly.com/question/2437195

RELAXING NOICE
Relax