Determine whether the sequence converges or diverges. If it converges, find the limit. (if an answer does not exist, enter dne. ) an = n 6 sin(6/n).

Respuesta :

Answer:

The sequence converges to 1

Step-by-step explanation:

Find the limit of the sequence as n approaches infinity

[tex]\lim_{n \to \infty} \frac{n}{6}sin(\frac{6}{n})[/tex]

[tex]\lim_{n \to \infty}\frac{sin(\frac{6}{n})}{\frac{6}{n}}[/tex]

[tex]\lim_{n \to \infty}\frac{cos(\frac{6}{n})*-\frac{6}{n^2} }{-\frac{6}{n^2}}[/tex]

[tex]\lim_{n \to \infty} cos(\frac{6}{n})[/tex]

[tex]cos(0)[/tex]

[tex]1[/tex]

Therefore, since the sequence approaches a limit of 1, then it converges.

RELAXING NOICE
Relax