Answer:
The sequence converges to 1
Step-by-step explanation:
Find the limit of the sequence as n approaches infinity
[tex]\lim_{n \to \infty} \frac{n}{6}sin(\frac{6}{n})[/tex]
[tex]\lim_{n \to \infty}\frac{sin(\frac{6}{n})}{\frac{6}{n}}[/tex]
[tex]\lim_{n \to \infty}\frac{cos(\frac{6}{n})*-\frac{6}{n^2} }{-\frac{6}{n^2}}[/tex]
[tex]\lim_{n \to \infty} cos(\frac{6}{n})[/tex]
[tex]cos(0)[/tex]
[tex]1[/tex]
Therefore, since the sequence approaches a limit of 1, then it converges.