Suppose x ≥ 0. Then
x² = y⁴ (1 - y³) ⇒ x = √(y⁴ (1 - y³)) = y² √(1 - y³)
On the other hand, if x < 0, then
x² = y⁴ (1 - y³) ⇒ x = - y² √(1 - y³)
Either expression for x in terms of y describes half of the curve, to either side of the y-axis (i.e. the line x = 0).
Find where these two curves intersect:
y² √(1 - y³) = - y² √(1 - y³)
2y² √(1 - y³) = 0
2y² = 0 or √(1 - y³) = 0
y = 0 or 1 - y³ = 0
y = 0 or y³ = 1
y = 0 or y = 1
So, the two halves meet at the points (0, 0) and (0, 1).
The area between the halves is then given by the integral
[tex]\displaystyle \int_{y=0}^{y=1} \left(y^2\sqrt{1-y^3} - \left(-y^2\sqrt{1-y^3}\right)\right) \, dy[/tex]
Let's calculate it:
[tex]\displaystyle \int_{y=0}^{y=1} 2y^2 \sqrt{1-y^3} \, dy[/tex]
Substitute z = 1 - y³ and dz = -3y² dy.
[tex]\displaystyle \int_{z = 1 - 0^3}^{z = 1 - 1^3} -\frac23 \sqrt{z} \, dz[/tex]
[tex]\displaystyle -\frac23 \int_{z = 1}^{z = 0} \sqrt{z} \, dz[/tex]
[tex]\displaystyle \frac23 \int_{z = 0}^{z = 1} z^{1/2} \, dz[/tex]
[tex]\displaystyle \frac23 \left(\frac23 z^{3/2}\right) \bigg|_{z=0}^{z=1}[/tex]
[tex]\displaystyle \frac49 z^{3/2} \bigg|_{z=0}^{z=1}[/tex]
[tex]\displaystyle \frac49 \cdot 1^{3/2} - 0 = \boxed{\frac49}[/tex]