Respuesta :

Answer:

[tex]{\sf AB}[/tex]: [tex](1/5)[/tex].

[tex]{\sf BC} [/tex]: [tex](8/7)[/tex].

[tex]{\sf AC}[/tex]: [tex](7/2)[/tex].

Step-by-step explanation:

Let [tex](x_{0},\, y_{0})[/tex] and [tex](x_{1},\, y_{1})[/tex] denote two points in the plane. As long as [tex]x_{0} \ne y_{0}[/tex] (that is, these two points are not on the same vertical line,) the slope of the line between these two points would be:

[tex]\displaystyle \frac{y_{1} - y_{0}}{x_{1} - x_{0}}[/tex].

For example, for side [tex]{\sf AB}[/tex], [tex]x_{0} = (-3)[/tex] and [tex]y_{0} = 5[/tex] (for point [tex]{\sf A}[/tex] at [tex](-3,\, 5)[/tex]) while [tex]x_{1} = 2[/tex] and [tex]y_{1} = 6[/tex] (for point [tex]{\sf B}[/tex] at [tex](2,\, 6)[/tex].)

Since [tex]x_{0} \ne x_{1}[/tex], the slope of the line between [tex]{\sf A}[/tex] and [tex]{\sf B}[/tex] would be:

[tex]\begin{aligned}m({\sf AB}) &=\frac{6 - 5}{2 - (-3)} \\ &= \frac{6 - 5}{2 + 3} \\ &= \frac{1}{5}\end{aligned}[/tex],

Likewise:

[tex]\begin{aligned}m({\sf BC}) &=\frac{(-2) - 6}{(-5) - 2} \\ &= \frac{(-8)}{(-7)} \\ &= \frac{8}{7}\end{aligned}[/tex].

[tex]\begin{aligned}m({\sf AC}) &=\frac{(-2) - 5}{(-5) - (-3)} \\ &= \frac{(-7)}{(-2)} \\ &= \frac{7}{2}\end{aligned}[/tex].

ACCESS MORE