The volume of a cube is increasing at a rate of 12 cm3/min. How fast is the surface area increasing when the length of an edge is 40 cm

Respuesta :

Answer:

[tex]\frac{dA}{dt}=\frac{6}{5}cm^2/min [/tex]

Step-by-step explanation:

Given

[tex]\frac{dV}{dt}=12cm^3/min [/tex] <-- The change in volume with respect to time

[tex]V=s^3[/tex] <-- Volume of a cube

[tex]A=6s^2[/tex] <-- Surface area of a cube

[tex]\frac{dA}{dt}=? [/tex] <-- The change in surface area with respect to time

[tex]s=40cm[/tex] <-- Length of edge of cube

Solve for ds/dt:

[tex]V=s^3[/tex]

[tex]\frac{dV}{dt}=3s^2\frac{ds}{dt} [/tex]

[tex]12=3(40)^2\frac{ds}{dt} [/tex]

[tex]12=4800\frac{ds}{dt} [/tex]

[tex]\frac{1}{400}=\frac{ds}{dt} [/tex]

Solve for dA/dt:

[tex]A=6s^2[/tex]

[tex]\frac{dA}{dt}=12s\frac{ds}{dt} [/tex]

[tex]\frac{dA}{dt}=12(40)(\frac{1}{400}) [/tex]

[tex]\frac{dA}{dt}=12(\frac{1}{10}) [/tex]

[tex]\frac{dA}{dt}=\frac{12}{10} [/tex]

[tex]\frac{dA}{dt}=\frac{6}{5}cm^2/min [/tex]

Therefore, the surface area of the cube is increasing at a rate of 6/5 cm²/min when the length of an edge is 40 cm.

Let me know if you need more help with related rates!

ACCESS MORE