How can the logarithmic expression be rewritten?
Select True or False for each statement.
(I'm really struggling please help)

How can the logarithmic expression be rewritten Select True or False for each statement Im really struggling please help class=

Respuesta :

[tex]\begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hspace{4em} \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( \frac{x}{y}\right)\implies \log_a(x)-\log_a(y) \end{array} \\\\\\ \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex][tex]\log_3(v)-4\log_3(w)\implies \log_3(v)-\log_3(w^4)\implies \log_3\left( \cfrac{v}{w^4} \right) \\\\[-0.35em] ~\dotfill\\\\ \log_4(n\sqrt{m})\implies \log_4(n)+\log_4(\sqrt{m}) \\\\\\ \log_4(n)+\log_4\left( m^{\frac{1}{2}} \right) \implies \log_4(n)+\cfrac{1}{2}\log_4(m)~~\textit{\large \checkmark} \\\\[-0.35em] ~\dotfill\\\\ \log_2\left( \cfrac{cd^3}{e^4} \right)\implies \underline{\log_2(cd^3)}-\log_2(e^4) \\\\\\ \underline{\log_2(c)+\log_2(d^3)}-\log_2(e^4) \implies \log_2(c)+3\log_2(d)-4\log_2(e)[/tex]