Answer:
The length and width of rectangle are 90 feet and 22.5 feet.
Step-by-step explanation:
Let the,
Now, according to the question substituting all the given values in the formula to find the value of x :
[tex] \longrightarrow{\pmb{\sf{P = 2(L + W)}}}[/tex]
[tex] \longrightarrow{\sf{P = 2(L + W)}}[/tex]
[tex] \longrightarrow{\sf{225= 2 \bigg(x + \dfrac{x}{4} \bigg)}}[/tex]
[tex] \longrightarrow{\sf{225= 2 \bigg(\dfrac{4x + x}{4} \bigg)}}[/tex]
[tex] \longrightarrow{\sf{225= 2 \bigg(\dfrac{5x}{4} \bigg)}}[/tex]
[tex] \longrightarrow{\sf{225= 2 \times \dfrac{5x}{4}}}[/tex]
[tex] \longrightarrow{\sf{225= \dfrac{2 \times 5x}{4}}}[/tex]
[tex] \longrightarrow{\sf{225= \dfrac{10x}{4}}}[/tex]
[tex] \longrightarrow{\sf{10x = 225 \times 4}}[/tex]
[tex] \longrightarrow{\sf{10x = 900}}[/tex]
[tex] \longrightarrow{\sf{x = \dfrac{900}{10}}}[/tex]
[tex]\longrightarrow{\sf{\underline{\underline{x = 90}}}}[/tex]
Hence, the value of x is 90.
Now, we know the value of x. So, calculating the length and width of rectangle :
[tex]\rule{300}{2.5}[/tex]