unit 7 right triangles and trigonometry homework 3 similar right triangles and Geometric Mean, pls help.
![unit 7 right triangles and trigonometry homework 3 similar right triangles and Geometric Mean pls help class=](https://us-static.z-dn.net/files/dbd/d5db79207c6d8db170c02cbda840852a.jpg)
![unit 7 right triangles and trigonometry homework 3 similar right triangles and Geometric Mean pls help class=](https://us-static.z-dn.net/files/d21/9c72caab73f7f13c51a492eb21b9d230.jpg)
The results are listed below:
11) The value of [tex]x[/tex] is approximately 32.404 units.
12) The value of [tex]x[/tex] is approximately 10.392 units.
13) The value of [tex]x[/tex] is approximately 15.875 units.
14) The value of [tex]x[/tex] is approximately 22.450 units.
15) The value of [tex]x[/tex] is 11.571 units.
16) The value of [tex]x[/tex] is 17 units.
17) The value of [tex]x[/tex] is approximately 21.333 units.
18) The value of [tex]x[/tex] is 24.857 units.
19) The solution of this system is: [tex]x \approx 16.155[/tex], [tex]y \approx 6.462[/tex], [tex]z\approx 2.4[/tex].
20) The solution of this system is: [tex]x = 37.5[/tex], [tex]y = 18[/tex], [tex]z = 22.5[/tex].
In this question we should apply Pythagorean theorem and algebraic methods to find the missing lengths. Now we proceed to the procedure for each case:
We construct the system of equations and find its solution:
[tex]-x^{2}+y^{2} = 40^{2}[/tex] (1)
[tex]y^{2}+z^{2} = 62^{2}[/tex] (2)
[tex]-x^{2}+z^{2} = 12^{2}[/tex] (3)
The solution of this system is: [tex]x \approx 32.404[/tex], [tex]y\approx 51.478[/tex], [tex]z\approx 34.554[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]-x^{2} + y^{2} = 3^{2}[/tex] (1)
[tex]-x^{2}+z^{2} = 36^{2}[/tex] (2)
[tex]y^{2}+z^{2} = 39^{2}[/tex] (3)
The solution of this system is: [tex]x \approx 10.392[/tex], [tex]y \approx 10.817[/tex], [tex]z \approx 37.470[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]x^{2}-y^{2} = 14^{2}[/tex] (1)
[tex]-y^{2}+z^{2} = 4^{2}[/tex] (2)
[tex]x^{2}+z^{2} = 18^{2}[/tex] (3)
The solution of this system is: [tex]x \approx 15.875[/tex], [tex]y\approx 7.483[/tex], [tex]z \approx 8.485[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]x^{2}-y^{2} = 8^{2}[/tex] (1)
[tex]-y^{2}+z^{2} = 8^{2}[/tex] (2)
[tex]x^{2}+z^{2} = 63^{2}[/tex] (3)
The solution of this system is: [tex]x \approx 22.450[/tex], [tex]y \approx 20.976[/tex], [tex]z \approx 58.865[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]-x^{2}+y^{2} = 18^{2}[/tex] (1)
[tex]z^{2} = 28^{2}+18^{2}[/tex] (2)
[tex]z^{2}+y^{2} = (x+28)^{2}[/tex] (3)
The solution of this system is: [tex]x = 11.571[/tex], [tex]y \approx 21.398[/tex], [tex]z\approx 33.287[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]y^{2} = 20^{2}-8^{2}[/tex] (1)
[tex]x^{2}+y^{2}-z^{2} = 0[/tex] (2)
[tex](x+8)^{2}-z^{2}= 20^{2}[/tex] (3)
The solution of this system is: [tex]x = 17[/tex], [tex]y \approx 18.330[/tex], [tex]z = 25[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]y^{2} = 16^{2}-12^{2}[/tex] (1)
[tex](x-12)^{2}+y^{2}-z^{2} = 0[/tex] (2)
[tex]x^{2}-z^{2} = 16^{2}[/tex] (3)
The solution of this system is: [tex]x \approx 21.333[/tex], [tex]y\approx 10.583[/tex], [tex]z \approx 14.110[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]-(x-21)^{2}+y^{2} = 9^{2}[/tex] (1)
[tex]z^{2} = 21^{2}+9^{2}[/tex] (2)
[tex]-x^{2}+y^{2}+z^{2} = 0[/tex] (3)
The solution of this system is: [tex]x = 24.857, y \approx 9.791, z \approx 22.847[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]y^{2}-z^{2} = 6^{2}[/tex] (1)
[tex]x^{2} = 6^{2}+15^{2}[/tex] (2)
[tex]x^{2}+y^{2}-(15+z)^{2} = 0[/tex] (3)
The solution of this system is: [tex]x \approx 16.155[/tex], [tex]y \approx 6.462[/tex], [tex]z\approx 2.4[/tex]. [tex]\blacksquare[/tex]
We construct the system of equations and find its solution:
[tex]y^{2} = 30^{2}-24^{2}[/tex] (1)
[tex](x-24)^{2}+y^{2}-z^{2} = 0[/tex] (2)
[tex]x^{2}-z^{2} = 30^{2}[/tex] (3)
The solution of this system is: [tex]x = 37.5[/tex], [tex]y = 18[/tex], [tex]z = 22.5[/tex]. [tex]\blacksquare[/tex]
To learn more on right triangles, we kindly invite to check this verified question: https://brainly.com/question/7894175