Respuesta :
Answer:
your answer is 2
Step-by-step explanation:
2d+2=4
Subtract 2 from both sides
2d=4
then divide both sides by 2 to get the d by itself
d=2
so your answer is 2
Answer:
[tex] \boxed{\tt \: d = 1}[/tex]
Step-by-step explanation:
[tex] \bf \: Given \: equation :[/tex]
[tex]2d + 2 = 4[/tex]
We need to find the value of d.
[tex] \bf \: Solution:[/tex]
[tex] \sf \implies2d+2=4[/tex]
Step 1 : [tex]\rm Subtract\; 2\: from\; both\; sides :[/tex]
[tex] \sf \implies \: 2d + 2 - 2 = 4 - 2[/tex]
- Simplify this :
[tex] \sf \implies2d + 0 = 2[/tex]
[tex] \sf \implies2d = 2[/tex]
Step 2 : [tex]\rm Divide \; each \: sides \; by \; 2 :[/tex]
[tex] \sf \implies \cfrac{2d}{2} = \cfrac{2}{2} [/tex]
[tex] \rm \: Cancel \: the \: LHS :[/tex]
- Cancel 2 (which is on the numerator) and cancel 2 (which is on the denominator) by 2 :- [Leave d]
[tex] \sf \implies \cfrac{ \cancel2d}{ \cancel2} = \cfrac{2}{2} [/tex]
- Results to,
[tex]\sf \implies \cfrac{ {}^{1} \cancel2d}{ {}^{1} \cancel2} = \cfrac{2}{2} [/tex]
[tex]\sf \implies 1d = \cfrac{2}{2} [/tex]
We know that 1d = d. So,
[tex] \sf \implies \: d = \cfrac{2}{2} [/tex]
[tex] \rm \: Now \:Cancel \: the \: RHS :[/tex]
- Cancel 2 (which is on the numerator) and cancel 2(which is on the denominator) by 2 :
[tex] \sf \implies{d} = \cfrac{ \cancel2}{ \cancel2} [/tex]
- Results to,
[tex]\sf \implies{d} = \cfrac{ \cancel2 {}^{1} }{ \cancel2{}^{1} } [/tex]
[tex]\sf \implies{d} = 1 [/tex]
Hence, the value of d would be 1.
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!
Let me know if you have any questions.