Respuesta :

Answer:

your answer is 2

Step-by-step explanation:

2d+2=4

Subtract 2 from both sides

2d=4

then divide both sides by 2 to get the d by itself

d=2

so your answer is 2

Answer:

[tex] \boxed{\tt \: d = 1}[/tex]

Step-by-step explanation:

[tex] \bf \: Given \: equation :[/tex]

[tex]2d + 2 = 4[/tex]

We need to find the value of d.

[tex] \bf \: Solution:[/tex]

[tex] \sf \implies2d+2=4[/tex]

Step 1 : [tex]\rm Subtract\; 2\: from\; both\; sides :[/tex]

[tex] \sf \implies \: 2d + 2 - 2 = 4 - 2[/tex]

  • Simplify this :

[tex] \sf \implies2d + 0 = 2[/tex]

[tex] \sf \implies2d = 2[/tex]

Step 2 : [tex]\rm Divide \; each \: sides \; by \; 2 :[/tex]

[tex] \sf \implies \cfrac{2d}{2} = \cfrac{2}{2} [/tex]

[tex] \rm \: Cancel \: the \: LHS :[/tex]

  • Cancel 2 (which is on the numerator) and cancel 2 (which is on the denominator) by 2 :- [Leave d]

[tex] \sf \implies \cfrac{ \cancel2d}{ \cancel2} = \cfrac{2}{2} [/tex]

  • Results to,

[tex]\sf \implies \cfrac{ {}^{1} \cancel2d}{ {}^{1} \cancel2} = \cfrac{2}{2} [/tex]

[tex]\sf \implies 1d = \cfrac{2}{2} [/tex]

We know that 1d = d. So,

[tex] \sf \implies \: d = \cfrac{2}{2} [/tex]

[tex] \rm \: Now \:Cancel \: the \: RHS :[/tex]

  • Cancel 2 (which is on the numerator) and cancel 2(which is on the denominator) by 2 :

[tex] \sf \implies{d} = \cfrac{ \cancel2}{ \cancel2} [/tex]

  • Results to,

[tex]\sf \implies{d} = \cfrac{ \cancel2 {}^{1} }{ \cancel2{}^{1} } [/tex]

[tex]\sf \implies{d} = 1 [/tex]

Hence, the value of d would be 1.

[tex] \rule{225pt}{2pt}[/tex]

I hope this helps!

Let me know if you have any questions.

ACCESS MORE