[tex] \boxed{\boxed{ \begin{array}{}\large\tt The \\ \tt \large Distance \: Formula \: \\ \large \tt and \\ \large\tt \: Coordinate \: Proof \end{array}}}[/tex]
Direction: Find the distance between each pair of points on the coordinate plane and write the solution.


1. A(3, 8) and B(3, -2)

2. O(5, -2) and K(7, -2)

3. L(4, -4) and M(-4, 6)

4. P(5, 1) and C(2, 3)

5. Q(-10, 9) and R(-2, 3)

[tex] \boxed{\boxed{ \begin{array}{}\large\tt Nonsense + Useless \\ \large \tt= Report! \end{array}}}[/tex]

Respuesta :

Distance formula

[tex]\boxed{\sf \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}[/tex]

Now

#1

[tex]\\ \tt\Rrightarrow AB=\sqrt{(3-3)^2+(-2-8)^2}=\sqrt{100}=10units[/tex]

#2

[tex]\\ \tt\Rrightarrow OK=\sqrt{(5-7)^2+(-2+2)^2}=\sqrt{4}=2units[/tex]

#3

[tex]\\ \tt\Rrightarrow LM=\sqrt{(-4-4)^2+(6+4)^2}=\sqrt{64+100}=\sqrt{164}\approx 13units[/tex]

#4

[tex]\\ \tt\Rrightarrow PC=\sqrt{(5-2)^2+(1-3)^2}=\sqrt{9+4}=\sqrt{13}=3.2units[/tex]

#5

[tex]\\ \tt\Rrightarrow QR=\sqrt{(-2+10)^2+(3-9)^2}=\sqrt{64+36}=\sqrt{100}=10units[/tex]

Answer:

Answer of all given questions are given below :

  • 1) AB = 10 units
  • 2) OK = 2 units
  • 3) LM = 2√41 units
  • 4) PC ≈ 3.6 units
  • 5) QR = 10 units

Step-by-step explanation:

Here's the required formula to find distance between points :

[tex]\star{\small{\underline{\boxed{\sf{\red{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}}}[/tex]

According to this formula, we'll solve all the given questions and find the distance between points.

1. A(3, 8) and B(3, -2)

Substituting all the given values in the formula to find the distance between points:

[tex]{\implies{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]

[tex]{\implies{\small{\sf{AB = \sqrt{\Big(3 - 3 \Big)^{2} + \Big( - 2 - 8 \Big)^{2}}}}}}[/tex]

[tex]{\implies{\small{\sf{AB = \sqrt{\Big(0\Big)^{2} + \Big( - 10 \Big)^{2}}}}}}[/tex]

[tex]{\implies{\small{\sf{AB = \sqrt{\Big(0 \times 0\Big) + \Big( - 10 \times - 10 \Big)}}}}}[/tex]

[tex]{\implies{\small{\sf{AB = \sqrt{\big(0 + 100\big)}}}}}[/tex]

[tex]{\implies{\small{\sf{AB = \sqrt{100}}}}}[/tex]

[tex]{\implies{\sf{\underline{\underline{\purple{AB = 10}}}}}}[/tex]

Hence, the distance between points AB is 10 units..

[tex]\begin{gathered}\end{gathered}[/tex]

2. O(5, -2) and K(7, -2)

Substituting all the given values in the formula to find the distance between points:

[tex]{\longrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\Big(7 - 5\Big)^{2} + \Big( - 2 + 2 \Big)^{2}}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\Big(2\Big)^{2} + \Big(0 \Big)^{2}}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\Big(2 \times 2\Big) + \Big(0 \times 0 \Big)}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\big(4 + 0 \big)}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{OK = \sqrt{4}}}}}[/tex]

[tex]{\longrightarrow{\sf{\underline{\underline{\pink{OK = 2}}}}}}[/tex]

Hence, the distance between points OK is 2 units.

[tex]\begin{gathered}\end{gathered}[/tex]

3. L(4, -4) and M(-4, 6)

Substituting all the given values in the formula to find the distance between points:

[tex]{\longmapsto{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]

[tex]{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 4 - 4\Big)^{2} + \Big( 6 + 4 \Big)^{2}}}}}}[/tex]

[tex]{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 8\Big)^{2} + \Big(10 \Big)^{2}}}}}}[/tex]

[tex]{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 8 \times - 8\Big) + \Big(10 \times 10\Big)}}}}}[/tex]

[tex]{\longmapsto{\small{\sf{LM = \sqrt{\big( 64 + 100\big)}}}}}[/tex]

[tex]{\longmapsto{\small{\sf{LM = \sqrt{164}}}}}[/tex]

[tex]{\longmapsto{\sf{\underline{\underline{\orange{LM = 2 \sqrt{41} }}}}}}[/tex]

Hence, the distance between points LM is 241 units.

[tex]\begin{gathered}\end{gathered}[/tex]

4. P(5, 1) and C(2, 3)

Substituting all the given values in the formula to find the distance between points:

[tex]{\dashrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]

[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\Big(2 - 5 \Big)^{2} + \Big(3 - 1 \Big)^{2}}}}}}[/tex]

[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\Big( - 3\Big)^{2} + \Big(2\Big)^{2}}}}}}[/tex]

[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\Big( - 3 \times - 3\Big) + \Big(2 \times 2\Big)}}}}}[/tex]

[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\big( 9 + 4\big)}}}}}[/tex]

[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{13}}}}}[/tex]

[tex]{\dashrightarrow{\sf{\underline{\underline{\green{PC \approx 3.6}}}}}}[/tex]

Hence, the distance between points PC is 3.6 units.

[tex]\begin{gathered}\end{gathered}[/tex]

5. Q(-10, 9) and R(-2, 3)

Substituting all the given values in the formula to find the distance between points:

[tex]{\twoheadrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]

[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( - 2 + 10 \Big)^{2} + \Big(3 - 9 \Big)^{2}}}}}}[/tex]

[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( 8 \Big)^{2} + \Big( - 6\Big)^{2}}}}}}[/tex]

[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( 8 \times 8 \Big)+ \Big( - 6 \times - 6\Big)}}}}}[/tex]

[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\big(64 + 36\big)}}}}}[/tex]

[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{100}}}}}[/tex]

[tex]{\twoheadrightarrow{\sf{\underline{\underline{\blue{QR = 10}}}}}}[/tex]

Hence, the distance between points QR is 10 units.

[tex]\rule{300}{2.5}[/tex]

Otras preguntas