Respuesta :
Distance formula
[tex]\boxed{\sf \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}[/tex]
Now
#1
[tex]\\ \tt\Rrightarrow AB=\sqrt{(3-3)^2+(-2-8)^2}=\sqrt{100}=10units[/tex]
#2
[tex]\\ \tt\Rrightarrow OK=\sqrt{(5-7)^2+(-2+2)^2}=\sqrt{4}=2units[/tex]
#3
[tex]\\ \tt\Rrightarrow LM=\sqrt{(-4-4)^2+(6+4)^2}=\sqrt{64+100}=\sqrt{164}\approx 13units[/tex]
#4
[tex]\\ \tt\Rrightarrow PC=\sqrt{(5-2)^2+(1-3)^2}=\sqrt{9+4}=\sqrt{13}=3.2units[/tex]
#5
[tex]\\ \tt\Rrightarrow QR=\sqrt{(-2+10)^2+(3-9)^2}=\sqrt{64+36}=\sqrt{100}=10units[/tex]
Answer:
Answer of all given questions are given below :
- 1) AB = 10 units
- 2) OK = 2 units
- 3) LM = 2√41 units
- 4) PC ≈ 3.6 units
- 5) QR = 10 units
Step-by-step explanation:
Here's the required formula to find distance between points :
[tex]\star{\small{\underline{\boxed{\sf{\red{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}}}[/tex]
According to this formula, we'll solve all the given questions and find the distance between points.
1. A(3, 8) and B(3, -2)
Substituting all the given values in the formula to find the distance between points:
[tex]{\implies{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]
[tex]{\implies{\small{\sf{AB = \sqrt{\Big(3 - 3 \Big)^{2} + \Big( - 2 - 8 \Big)^{2}}}}}}[/tex]
[tex]{\implies{\small{\sf{AB = \sqrt{\Big(0\Big)^{2} + \Big( - 10 \Big)^{2}}}}}}[/tex]
[tex]{\implies{\small{\sf{AB = \sqrt{\Big(0 \times 0\Big) + \Big( - 10 \times - 10 \Big)}}}}}[/tex]
[tex]{\implies{\small{\sf{AB = \sqrt{\big(0 + 100\big)}}}}}[/tex]
[tex]{\implies{\small{\sf{AB = \sqrt{100}}}}}[/tex]
[tex]{\implies{\sf{\underline{\underline{\purple{AB = 10}}}}}}[/tex]
Hence, the distance between points AB is 10 units..
[tex]\begin{gathered}\end{gathered}[/tex]
2. O(5, -2) and K(7, -2)
Substituting all the given values in the formula to find the distance between points:
[tex]{\longrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]
[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\Big(7 - 5\Big)^{2} + \Big( - 2 + 2 \Big)^{2}}}}}}[/tex]
[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\Big(2\Big)^{2} + \Big(0 \Big)^{2}}}}}}[/tex]
[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\Big(2 \times 2\Big) + \Big(0 \times 0 \Big)}}}}}[/tex]
[tex]{\longrightarrow{\small{\sf{OK = \sqrt{\big(4 + 0 \big)}}}}}[/tex]
[tex]{\longrightarrow{\small{\sf{OK = \sqrt{4}}}}}[/tex]
[tex]{\longrightarrow{\sf{\underline{\underline{\pink{OK = 2}}}}}}[/tex]
Hence, the distance between points OK is 2 units.
[tex]\begin{gathered}\end{gathered}[/tex]
3. L(4, -4) and M(-4, 6)
Substituting all the given values in the formula to find the distance between points:
[tex]{\longmapsto{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]
[tex]{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 4 - 4\Big)^{2} + \Big( 6 + 4 \Big)^{2}}}}}}[/tex]
[tex]{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 8\Big)^{2} + \Big(10 \Big)^{2}}}}}}[/tex]
[tex]{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 8 \times - 8\Big) + \Big(10 \times 10\Big)}}}}}[/tex]
[tex]{\longmapsto{\small{\sf{LM = \sqrt{\big( 64 + 100\big)}}}}}[/tex]
[tex]{\longmapsto{\small{\sf{LM = \sqrt{164}}}}}[/tex]
[tex]{\longmapsto{\sf{\underline{\underline{\orange{LM = 2 \sqrt{41} }}}}}}[/tex]
Hence, the distance between points LM is 2√41 units.
[tex]\begin{gathered}\end{gathered}[/tex]
4. P(5, 1) and C(2, 3)
Substituting all the given values in the formula to find the distance between points:
[tex]{\dashrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\Big(2 - 5 \Big)^{2} + \Big(3 - 1 \Big)^{2}}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\Big( - 3\Big)^{2} + \Big(2\Big)^{2}}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\Big( - 3 \times - 3\Big) + \Big(2 \times 2\Big)}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{\big( 9 + 4\big)}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{PC = \sqrt{13}}}}}[/tex]
[tex]{\dashrightarrow{\sf{\underline{\underline{\green{PC \approx 3.6}}}}}}[/tex]
Hence, the distance between points PC is 3.6 units.
[tex]\begin{gathered}\end{gathered}[/tex]
5. Q(-10, 9) and R(-2, 3)
Substituting all the given values in the formula to find the distance between points:
[tex]{\twoheadrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}[/tex]
[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( - 2 + 10 \Big)^{2} + \Big(3 - 9 \Big)^{2}}}}}}[/tex]
[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( 8 \Big)^{2} + \Big( - 6\Big)^{2}}}}}}[/tex]
[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( 8 \times 8 \Big)+ \Big( - 6 \times - 6\Big)}}}}}[/tex]
[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{\big(64 + 36\big)}}}}}[/tex]
[tex]{\twoheadrightarrow{\small{\sf{QR = \sqrt{100}}}}}[/tex]
[tex]{\twoheadrightarrow{\sf{\underline{\underline{\blue{QR = 10}}}}}}[/tex]
Hence, the distance between points QR is 10 units.
[tex]\rule{300}{2.5}[/tex]