The true statements are:
Equivalent expressions are expressions that have equal values
The original expression is given as:
[tex]\frac 15g- \frac 1{10}- g + 1 \frac{3}{10}g -\frac{1}{10}[/tex]
Collect like terms
[tex]\frac 15g- \frac 1{10}- g + 1 \frac{3}{10}g -\frac{1}{10} = \frac 15g - g + 1 \frac{3}{10}g- \frac 1{10} -\frac{1}{10}[/tex]
Evaluate the like terms
[tex]\frac 15g- \frac 1{10}- g + 1 \frac{3}{10}g -\frac{1}{10} = \frac{1}{2}g- \frac 1{5}[/tex]
Tyler's equivalent expression is given as:
[tex]\frac15g-g+ 1 \frac3{10}g-\frac 1{10}-\frac 45g+1 \frac{1}{10}[/tex]
Collect like terms
[tex]\frac15g-g+ 1 \frac3{10}g-\frac 1{10}-\frac 45g+1 \frac{1}{10} = \frac15g-g+ 1 \frac3{10}g-\frac 45g-\frac 1{10}+1 \frac{1}{10}[/tex]
Evaluate the like terms
[tex]\frac15g-g+ 1 \frac3{10}g-\frac 1{10}-\frac 45g+1 \frac{1}{10} = -\frac 3{10}g[/tex]
The simplified expressions of the original expression, and Tyson's equivalent expressions are not equal.
Hence, Tyson's expression is not equivalent to the original expression
Read more about equivalent expressions at:
https://brainly.com/question/9603710