The total charge on the helix is
Height of one turn = [tex]\frac{H}{n}[/tex]
Horizontal distance in one turn = [tex]2\pi R[/tex]
[tex]l = \sqrt{h^2+(2\piR)^2}\\\\ l = \sqrt{(\frac{H}{n})^2+(2\piR)^2} [/tex]
So, the total length of spring
[tex]L = n*l\\\\ L = n * \sqrt{(\frac{H}{n})^2+(2\piR)^2} [/tex]
Therefore, charge on spring
[tex]Q = \frac{1}{2}*L*(13-0)\\\\ Q = \frac{1}{2}*n\sqrt{(\frac{H}{n})^2+(2\piR)^2}*13\\\\ Q = \frac{1}{2}*17*13\sqrt{(\frac{H}{17})^2+(2\piR)^2}\\\\ Q = \frac{221}{2}\sqrt{(\frac{H}{17})^2+(2\piR)^2\\\\ [/tex]
For more information on linear charge density, visit
https://brainly.com/question/15359786