The true statements are:
The given parameters are:
[tex]n = 61[/tex] --- the total available number
[tex]r = 5[/tex] --- the numbers to select
Since the order of selection is not important, we make use of the combination formula as follows:
[tex]^nC_r = \frac{n!}{(n -r)!r!}[/tex]
So, we have:
[tex]^{61}C_5 = \frac{61!}{(61 -5)!5!}[/tex]
[tex]^{61}C_5 = \frac{61!}{56!5!}[/tex]
Simplify
[tex]^{61}C_5 = \frac{61 \times 60 \times 59 \times 58 \times 57}{5 \times 4 \times 3 \times 2 \times 1} [/tex]
[tex]^{61}C_5 = \frac{713897640}{120}[/tex]
[tex]^{61}C_5 = 5949147[/tex]
Hence, there are 5949147 ways, groups of first five different numbers can be selected.
The last number can be any number from 1 to 27.
So, the total number of ways is:
[tex]Total = 27 \times 5949147 [/tex]
[tex]Total = 160626969[/tex]
Hence, there are 160626969 possible distinct outcomes
Read more about permutation and combination at:
https://brainly.com/question/11732255