simplify each expression using the distributive property. 1.) 3(x - 7) = 2) 10(9y - 0.5) =

3) 7(b - 12) = 4) 9(8c + 6) 5) 4(5a + 6) =

6.) 9(c - 4) = 7) 3(9r + 10) = 8). 6(x - 8) =

9). 11(4y - 7) = 10). 5(11c - 3)​

Respuesta :

Applying the distributive property, the following expression are simplified as:

1.  3(x - 7) = 3x - 21

2. 10(9y - 0.5) = 90y - 5

3. 7(b - 12) = 7b - 84

4. 9(8c + 6) 72c + 54

5. 4(5a + 6) = 20a + 24

6. 9(c - 4) = 9c - 36

7. 3(9r + 10) = 27r + 30

8. 6(x - 8) = 6x - 48

9. 11(4y - 7) = 44y - 77

10. 5(11c - 3) = 55c - 15

What is the Distributive Property?

  • The distributive property in maths is given as: if a(b + c), then, a(b + c) = ab + ac.
  • To apply the distributive property in simplifying an expression, simply multiply the term outside the parenthesis by every term within the parenthesis.

Thus:

1.  3(x - 7) = 3x - 21

2. 10(9y - 0.5) = 90y - 5

3. 7(b - 12) = 7b - 84

4. 9(8c + 6) 72c + 54

5. 4(5a + 6) = 20a + 24

6. 9(c - 4) = 9c - 36

7. 3(9r + 10) = 27r + 30

8. 6(x - 8) = 6x - 48

9. 11(4y - 7) = 44y - 77

10. 5(11c - 3) = 55c - 15

Learn more about the distributive property on:

https://brainly.com/question/2807928

ACCESS MORE