Completing the squares and comparing to the standard equation, it is found that the diameter of the circle is of [tex]\sqrt{89}[/tex] units.
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
In this problem, the equation is:
[tex]x^2 + 5x = -8y - y^2[/tex]
Then:
[tex]x^2 + 5x + y^2 + 8y[/tex]
Completing the squares:
[tex]\left(x + \frac{5}{2}\right)^2 + (y + 4)^2 = \left(\frac{5}{2}\right)^2 + 4^2[/tex]
[tex]\left(x + \frac{5}{2}\right)^2 + (y + 4)^2 = \frac{25}{4} + 16[/tex]
[tex]\left(x + \frac{5}{2}\right)^2 + (y + 4)^2 = \frac{89}{4}[/tex]
Hence:
[tex]r^2 = \frac{89}{4}[/tex]
[tex]r = \sqrt{\frac{89}{4}}[/tex]
[tex]r = \frac{\sqrt{89}}{2}[/tex]
Hence, the diameter is:
[tex]d = 2r = 2\left(\frac{\sqrt{89}}{2}\right) = \sqrt{89}[/tex]
You can learn more about the equation of a circle at https://brainly.com/question/16505663