Using logarithm properties, it is found that the value of [tex]\log_b{4b}[/tex] is of 3.
What are logarithm properties?
Examples are:
- Logarithm of multiplication: [tex]\log{MN} = \log{M} + \log{N}[/tex].
- Same base, that is, [tex]\log_b{b} = 1[/tex].
In this problem, we want to find:
[tex]\log_b{4b}[/tex]
Applying the multiplication property:
[tex]\log_b{4b} = \log_b{4} + \log_b{b}[/tex]
4 is 8 multiplied by 0.5, hence:
[tex]\log_b{4b} = \log_b{4} + \log_b{b} = \log_b{8(0.5)} + \log_b{b}[/tex]
Applying the multiplication property again:
[tex]\log_b{4b} = \log_b{8} + \log_b{0.5} + \log_b{b}[/tex]
Applying the values and the same base property:
[tex]\log_b{4b} = \log_b{8} + \log_b{0.5} + \log_b{b} = 3 - 1 + 1 = 3[/tex]
You can learn more about logarithm properties at https://brainly.com/question/2528611