The value of a, b and c can be calculated using the inverse function.
The calculated the value of a= 2, b=1 and c= -2.
Given:
The function is [tex]f(x)=\log_{0.5}x[/tex] and its inverse is [tex]f^{-1}(x)=0.5^x[/tex] .
Substitute the value of x= -1 in a given inverse function and calculate the value of a.
[tex]f^{-1}(x)=0.5^x\\ f^{-1}(-1)=0.5^{-1}\\ f^{-1}(-1)=2[/tex]
Substitute the value of x is 0 in given inverse function.
[tex]f^{-1}(x)=0.5^x\\ f^{-1}(0)=0.5^0\\ f^{-1}(0)=1[/tex]
Substitute the value of x is 2 in given inverse function.
[tex]f^{-1}(x)=0.5^x\\f^{-1}(2)=0.5^2\\f^{-1}(2)=-2[/tex]
Therefore, the value of a= 2, b=1 and c=-2.
Learn more about inverse function here:
brainly.com/question/15912209