The inverse of the logarithmic function f(x) = log0. 5x is f−1(x) = 0. 5x. What values of a, b, and c complete the table for the inverse function? x −2 −1 0 1 2 y 4 a b 0. 5 c a = b = c =.

Respuesta :

The value of a, b and c can be calculated using the inverse function.

The calculated the value of a= 2, b=1 and c= -2.

Given:

The function is  [tex]f(x)=\log_{0.5}x[/tex] and its inverse is [tex]f^{-1}(x)=0.5^x[/tex] .

What is an inverse function?

  • The inverse function of a function is defined if [tex]f[/tex] is a function that undoes the operation of [tex]f[/tex].
  • The inverse of [tex]f[/tex] exists if and only if [tex]f[/tex] is bijective, and if it exists, is denoted by [tex]f^{-1}[/tex].

Substitute the value of x= -1 in a given inverse function and calculate the value of a.

[tex]f^{-1}(x)=0.5^x\\ f^{-1}(-1)=0.5^{-1}\\ f^{-1}(-1)=2[/tex]

Substitute the value of x  is 0 in given inverse function.

[tex]f^{-1}(x)=0.5^x\\ f^{-1}(0)=0.5^0\\ f^{-1}(0)=1[/tex]

Substitute the value of x  is 2 in given inverse function.

[tex]f^{-1}(x)=0.5^x\\f^{-1}(2)=0.5^2\\f^{-1}(2)=-2[/tex]

Therefore, the value of a= 2, b=1 and c=-2.

Learn more about inverse function here:

brainly.com/question/15912209