Respuesta :

The solutions of [tex]\log_3x + \log_3(x^2 + 2) = 1 + 2\log_3x[/tex] can be calculated using the logarithm rule.

The solution of [tex]\log_3x + \log_3(x^2 + 2) = 1 + 2\log_3x[/tex]  is [tex]x=2[/tex] and [tex]x=1[/tex].

Given:

The expression is,

[tex]\log_3x + \log_3(x^2 + 2) = 1 + 2\log_3x[/tex]

What is a logarithm?

The logarithm is the inverse function of exponentiation. In logarithm base must be raised to yield a given number for an exponent. The following rule will use solve the given problem.

  • [tex]\log_aa=1[/tex]
  • [tex]\log_a(mn)=\log_am+\log_bn[/tex]
  • [tex]\log_ax^n=n\log_ax[/tex]

Apply the above rule to solve the given problem.

[tex]\log_3x(x^2+2)=\log_33+\log_3x^2\\ \log_3x(x^2+2)=\log_33x^2\\ x(x^2+2)=3x^2[/tex]

Now, solve the above algebraic expression,

[tex]x^2-3x+2=0\\ x^2-2x-x+2=0\\ x(x-2)-1(x-2)=0\\ (x-2)(x-1)=0[/tex]

Thus, the solution of [tex]\log_3x + \log_3(x^2 + 2) = 1 + 2\log_3x[/tex]  is [tex]x=2[/tex] and [tex]x=1[/tex].

Learn more about the logarithm rule here:

brainly.com/question/7302008

Answer:

x = 1

x = 2

Step-by-step explanation: correct on edg2022

ACCESS MORE